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As the aviation industry increasingly relies on data-driven intelligence to enhance safety 

and operational efficiency, the demand for AI solutions that are both technically robust and 

readily interpretable continues to intensify. This research presents a pioneering methodology 

for advanced fault diagnosis in aircraft landing gear systems that not only achieves high 

predictive accuracy but also provides transparent, actionable insights. Building upon a two-

tier machine learning framework—integrating fault classification with intelligent sensor data 

imputation—we demonstrate how state-of-the-art explainability techniques, notably LIME 

and SHAP, can elucidate the underlying logic of complex models. By exposing the critical 

features and sensor parameters driving each decision, this approach empowers maintenance 

engineers and operations personnel to understand, validate, and trust the model’s outputs 
rather than relying on opaque “black-box” predictions. 

Our results indicate that interpretable fault diagnoses facilitate more confident decision-

making, streamline maintenance interventions, and reduce the likelihood of unforeseen 

component failures. Beyond mere compliance with emerging regulatory standards for AI 

transparency, this method establishes a blueprint for deploying machine learning solutions 

that are not only accurate and robust, but also inherently comprehensible. In an era where 

aerospace systems must seamlessly integrate precision, reliability, and human oversight, our 

work sets a precedent for creating intelligent tools that foster trust, enhance collaboration 

between technical experts and AI models, and ultimately contribute to safer and more efficient 

aviation operations. 

I. Nomenclature 

AI = Artificial Intelligence 

AIAA = American Institute of Aeronautics and Astronautics 

ATA 32 = Air Transport Association Chapter 32, pertaining to Landing Gear Systems 

FAA = Federal Aviation Administration 

FDD = Fault Detection and Diagnosis 

F1-score = Harmonic mean of Precision and Recall 

KNN = K-Nearest Neighbors 

L1, L2 = Regularization terms (L1 = Lasso; L2 = Ridge) 

LLM = Large Language Model 

LIME = Local Interpretable Model-agnostic Explanations 

PHM = Prognostics and Health Management 

SHAP = SHapley Additive exPlanations 

XAI = Explainable Artificial Intelligence 

XGBoost = eXtreme Gradient Boosting 
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II. Introduction 

 

 In safety-critical domains such as aerospace, the reliability, consistency, and interpretability of automated 

diagnostics are more than mere design goals—they are fundamental imperatives. Among the spectrum of aircraft 

subsystems, the landing gear stands out as a singular, load-bearing interface with the ground, devoid of redundancy 

and demanding unwavering reliability. Even a subtle deviation in hydraulic pressure, fluid temperature, or actuator 

performance can signal a deterioration that, if left unaddressed, could escalate into a critical fault and compromise 

flight safety. 

 

 Over the last decade, data-driven fault detection and diagnosis (FDD) models have progressed beyond rudimentary 

thresholds and rule-based alarms into sophisticated machine learning (ML) pipelines capable of recognizing nuanced 

degradation patterns [1,2]. In previous work, we introduced a two-tier ML architecture designed to handle noisy, 

sensor-rich environments by coupling a primary fault classifier with a secondary imputation model to manage missing 

or corrupted data [3,4,5]. Although this approach significantly improved predictive accuracy and robustness, a 

persistent limitation remained: the underlying ML algorithms often operated as “black boxes,” leaving operators to 
question why the model flagged a certain anomaly. Without a transparent explanation of the decision-making process, 

even accurate predictions can erode confidence, inhibit rapid response, and reduce the tangible value of these advanced 

analytical methods. 

 

 Recent developments in explainable AI (XAI) offer a promising solution to this interpretability deficit. 

Frameworks such as SHAP (SHapley Additive exPlanations) and LIME (Local Interpretable Model-agnostic 

Explanations) have demonstrated success in demystifying complex models across various domains—ranging from 

clinical diagnostics to critical infrastructure monitoring—by highlighting which features most strongly influence 

particular predictions [6,7]. Applied to aircraft landing gear diagnostics, these tools enable maintenance engineers to 

pinpoint the sensor readings and operational conditions that elevate a nominal scenario to a suspected fault, bridging 

the gap between algorithmic output and engineering intuition. 

 

 However, deploying these explainability techniques in aerospace contexts introduces its own challenges. The high 

dimensionality of sensor data, the temporal nature of fault progression, and stringent regulatory frameworks impose 

exacting requirements on both accuracy and clarity. To meet these standards, XAI must integrate seamlessly into the 

existing ML pipeline, presenting localized, instance-specific explanations that are accessible to experts with a range 

of technical backgrounds. The result is not merely a technical enhancement, but a shift in paradigm: from AI as a 

cryptic oracle to AI as an interpretable decision-support partner aligned with the operational and safety objectives of 

aerospace organizations. 

A. Objectives: 

 

 The central objective of this research is to seamlessly embed advanced interpretability techniques—specifically 

LIME and SHAP—into a robust fault diagnosis pipeline for landing gear systems. By doing so, we aim to empower 

maintenance personnel and engineering teams with the ability to understand precisely why the model has detected a 

given fault condition. Unlike traditional dashboards and probability scores that offer minimal insight, the explanations 

derived from these XAI methods provide granular, locally valid attributions, reinforcing trust, guiding targeted 

inspections, and expediting corrective measures. 

 

 In the following sections, we detail the integration of state-of-the-art explainability methods within our two-tier 

ML framework. We further illustrate how these enhancements facilitate a more transparent and effective predictive 

maintenance environment, ensuring that future aerospace AI deployments can confidently rely on interpretable, 

human-centered insights rather than opaque computational outcomes.  

III. Literature review 

 

The evolution of data-driven prognostics and health management (PHM) strategies in aerospace has intensified 

the demand for interpretable, trustworthy machine learning (ML) solutions. As complex systems generate vast, 

heterogeneous sensor data, conventional threshold-based alerts and periodic inspections [1,2] are increasingly 

supplanted by sophisticated ML pipelines capable of detecting subtle, non-linear indicators of impending failures 
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[3,4]. Yet, the “black-box” nature of many advanced algorithms—ranging from ensemble methods to deep neural 

networks—presents a critical bottleneck: even the most accurate models risk undermining user confidence and 

operational decision-making if their predictions cannot be clearly explained and aligned with engineering intuition. 

A. Fault Diagnosis in Safety-Critical Aerospace Systems 

 

The aerospace sector has long pursued robust fault detection and diagnosis (FDD) frameworks, initially relying on 

physics-based modeling and heuristic thresholds to identify anomalies [1,2]. Over the past two decades, data-driven 

methodologies, including neural networks, Bayesian inference, and kernel methods, have demonstrated improved 

accuracy and earlier detection of failure precursors [3,4]. For instance, Chen et al. [3] applied pattern recognition 

techniques to hydraulic subsystems, and Wu et al. [4] employed AI-driven sensor fault detection methods, revealing 

the potential of ML to outperform static alarms in complex, noisy environments. 

 

Building upon these foundations, more recent studies have addressed issues of data incompleteness and signal 

corruption—a common challenge in real-world aerospace scenarios. Our prior work [5] introduced a two-tier ML 

architecture pairing fault classification with data imputation to mitigate the impact of missing or faulty sensor readings, 

a theme echoed in broader PHM literature [11,12]. Although these strategies have bolstered robustness and reliability, 

the interpretability gap persists, restricting stakeholders’ ability to fully trust and operationalize model outputs. 

B. The Emergence of Explainable AI (XAI) 

 

Recognizing that opacity in ML-driven diagnostics limits adoption and regulatory acceptance, the aerospace 

community has turned to explainable AI (XAI) frameworks. XAI aims to clarify how and why models produce certain 

predictions, enabling maintenance crews, engineers, and decision-makers to validate, refine, and trust these insights 

[6,7]. While XAI initially gained traction in fields like healthcare and finance—where understanding the rationale 

behind a classification is crucial—its relevance to safety-critical aerospace systems is clear. Recent reviews underscore 

the necessity for transparent ML in high-stakes sectors, highlighting the alignment of XAI with human-machine 

teaming and the mitigation of cascading errors [8,9,13]. 

C. Local Interpretability with LIME and SHAP 

 

Among the plethora of XAI approaches, LIME (Local Interpretable Model-agnostic Explanations) and SHAP 

(SHapley Additive exPlanations) have emerged as gold standards for instance-level interpretability [6,7,14]. LIME 

approximates a complex model’s decision boundary by training a simpler, interpretable surrogate around the vicinity 
of the instance under scrutiny. SHAP, grounded in cooperative game theory, attributes each feature a “marginal 

contribution” to the predicted outcome. Both methods furnish fine-grained insights, exposing which sensor metrics—
such as fluid temperature anomalies or actuator speed deviations—most strongly influence the fault classification. 

 

Studies applying these techniques in aviation contexts, though still emerging, are promising. Mueller et al. [15] 

discussed integrating XAI methods into aeroengine health monitoring, arguing that instance-specific attributions can 

accelerate corrective interventions and strengthen operator confidence. Although their focus lies primarily in 

propulsion systems, the same principles hold for landing gear fault diagnosis, where clarity about which parameters 

drove a fault prediction can guide targeted inspections rather than guesswork-based troubleshooting. 

D. Domain Adaptation and Contextual Alignment 

 

The mere application of LIME and SHAP does not guarantee actionable insight. Domain adaptation is essential: 

explanations must reference meaningful operational thresholds, known engineering limits, and long-established 

maintenance heuristics. By grouping correlated sensors into composite health indicators or highlighting features that 

surpass known safety margins, aerospace practitioners can translate abstract importance scores into grounded 

engineering narratives [5,11,12]. Incorporating temporal context is another frontier, wherein trend-based explanations 

can delineate how a subtle drift in hydraulic pressure over multiple cycles signals imminent component wear, thus 

offering predictive power rather than reactive alarms [13]. 

 

Emerging frameworks that fuse XAI with digital twins—a virtual, continuously updated replica of the physical 

subsystem—further contextualize explanations, linking changes in model outputs to ongoing operational conditions 
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and historical performance data [10]. This integrated perspective enriches the reasoning process, enabling engineers 

to understand not just isolated fault triggers, but their evolution over time and their interplay with other subsystems. 

E. Trust, Regulation, and Industry Trends 

 

Trust in AI-driven diagnostics is not merely a technical concern; it is also a regulatory and organizational priority. 

Bodies such as the Federal Aviation Administration (FAA) and the European Union Aviation Safety Agency (EASA) 

are beginning to explore guidelines that include provisions for explainability and auditability in AI-based systems 

[8,9,13]. As these frameworks solidify, XAI-equipped diagnostic models will likely be better positioned for rapid 

acceptance, certification, and integration into daily aerospace operations. Transparent models align with the industry’s 
overarching principles of reliability, safety, and continuous improvement, bridging the gap between cutting-edge 

computational methods and the structured, methodical mindset of aerospace engineering. 

F. Paths for Future Research 

 

The literature reveals that while XAI has made significant inroads into aerospace PHM, there remain opportunities 

to enhance scalability, integrate richer sensor modalities (e.g., advanced fiber-optic sensing or embedded wireless 

nodes), and refine temporal reasoning. Researchers continue to investigate how to best tailor LIME and SHAP 

explanations to distinct fault classes and complex flight regimes, ensuring that the most relevant insights are surfaced. 

Efforts to standardize XAI evaluation criteria and link explanations to measurable maintenance outcomes, such as 

reduced mean-time-to-repair or improved component lifespans, stand as key growth areas [14,16–20]. 

 

In summary, the literature points to a trajectory where data-driven fault diagnosis evolves from a specialized 

analytical tool to a fully integrated decision support system informed by XAI principles. By leveraging LIME, SHAP, 

and related techniques, future aerospace diagnostics can deliver not only predictive accuracy but also a window into 

the model’s reasoning, ultimately empowering engineers to make safer, more efficient maintenance decisions. 

IV. Methodology 

A. System Architecture 

 

The system architecture is conceived as a multi-layered analytical pipeline that begins with raw sensor data and 

culminates in transparent, actionable fault diagnostics for the aircraft landing gear subsystem. As depicted in Figure 

1, this framework is deliberately structured to address the fundamental challenges of data integrity, complexity, and 

interpretability that characterize safety-critical aerospace environments. While prior research has demonstrated 

impressive accuracy in fault detection models, the inability to rationalize predictions remains a key barrier to 

operational trust [21,22]. 

 

At the front end, the pipeline ingests diverse sensor readings, including hydraulic pressure, fluid temperature, pump 

speed, and actuator positions. These signals are often subject to environmental noise, temporary sensor malfunctions, 

and varying operational regimes—a complexity that necessitates meticulous data preprocessing. Normalization, time 

synchronization, and noise reduction steps ensure that the input features presented to the machine learning models are 

both coherent and representative of actual system states. By systematically curating input data, we mitigate the risk of 

bias and enhance the resilience of subsequent analytic stages. Central to this architecture is the two-tier machine 

learning (ML) approach, adapted from our earlier work [5], wherein a primary classification model detects faults and 

a secondary imputation model ensures the quality and consistency of input features. This dual-layer strategy not only 

improves fault detection accuracy but also stabilizes performance under non-ideal conditions. Such architectures are 

increasingly recognized as best practices in prognostics and health management (PHM) for complex aerospace 

systems, where data anomalies can obscure critical warning signs [23,24]. By incorporating an imputation layer to 

reconstruct plausible sensor values from partially corrupted data, the pipeline can maintain robust functionality despite 

real-world imperfections, thereby reducing false alarms and missed detections. 

 

Following the ML-based inference, the framework integrates post-hoc explainability techniques—LIME and 

SHAP—to illuminate the internal logic of the classification model. Unlike traditional “black-box” classifiers, this 
pipeline offers localized explanations that highlight which specific features most influenced a given fault prediction. 

Such interpretability is essential in aerospace contexts, where maintenance personnel and engineers must understand 
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the rationale behind each alert to take informed, timely action [25]. While purely predictive models may suggest a 

pump failure risk, the explainability layer can pinpoint, for instance, that a combination of elevated fluid temperatures 

and subtle pump speed fluctuations triggered the fault flag. Armed with this insight, operators can prioritize targeted 

inspections or part replacements that directly address the identified root causes. 

 

Figure 1 encapsulates these interactions, illustrating how raw sensory inputs flow through preprocessing steps, are 

evaluated by the two-tier ML architecture, and finally yield fault diagnoses accompanied by explanatory annotations. 

In contrast to monolithic or single-stage systems, this modular configuration supports scalability and adaptability. As 

new sensor modalities emerge, computational resources evolve, or regulatory standards for AI transparency advance, 

the pipeline can be refined and extended without dismantling its core conceptual integrity [26,27]. For example, 

integrating additional sensor channels or substituting a more advanced imputation strategy can be achieved with 

minimal disruption, reflecting a future-proof design philosophy that aligns with the evolving landscape of aerospace 

analytics. In essence, the system architecture embodies a strategic convergence of data engineering, robust ML 

modeling, and principled explainability methods. By weaving these elements into a coherent pipeline, we pave the 

way for fault diagnosis tools that are not only accurate and reliable but also inherently interpretable—an indispensable 

quality in mission-critical domains where trust, accountability, and proactive decision-making are paramount. 

 

 

Figure 1. End-to-End Conversational XAI Pipeline for Landing Gear Fault Diagnosis 

B. Data and Simulation Environment 
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A key element of our approach involves creating a controlled, yet realistic environment to produce representative 

datasets of aircraft landing gear performance. Because obtaining genuine in-flight fault data is both rare and potentially 

dangerous, using high-fidelity simulations provides a practical means for model development and assessment. In this 

work, we rely on a simulation-driven methodology, employing specialized software and custom fault-injection 

techniques to ensure the resulting dataset rigorously challenges and validates the AI pipeline. 

 

1. Simulation Framework and Setup: 

 

Our simulation environment is rooted in a physics-based landing gear actuation model adapted from previously 

established hydraulic subsystem prototypes [5]. Implemented in MATLAB/Simulink with Simscape Fluids, this 

model captures the aerodynamic, hydraulic, and mechanical aspects of modern landing gear assemblies. It reproduces 

the full operational cycle—from extension and retraction to ground and airborne phases—mimicking the diverse 

stresses encountered during takeoff, landing, and taxi operations. 

 

By adjusting parameters such as hydraulic fluid viscosity, pump speed, actuator displacement rates, and valve 

timing, the simulation re-creates realistic operating conditions. Integral control loops, feedback sensors, and nonlinear 

factors (e.g., stiction, fluid compressibility) are incorporated to ensure the synthetic environment reflects the complex 

interactions characteristic of actual flight hardware. 

 

 

Fig. 2 Block diagram of the simulation 

 

2. Failure Scenario Generation: 

 

To ensure comprehensive training of our ML model, we simulated a broad range of scenarios that reflect both 

nominal and fault conditions. Our approach includes 370 distinct failure scenarios, systematically grouped into 12 

categorized fault types. Since real-world data is often contaminated by noise, the simulation deliberately introduces 

noisy sensor readings, thereby enhancing the dataset’s authenticity. 
 

By incorporating both single-mode and multimode failure states, the resulting dataset represents a wide spectrum 

of system behaviors. This diversity is essential for enabling the machine learning model to learn robust fault detection 

and classification strategies, as summarized in Table 1 [5,29,30]. 
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Table 1. Classification of Fault Scenarios in Aircraft Landing Gear Systems 

Scenario 

Number 

Scenario Type Faulty Scenario Description 

1 Single-mode No fault condition Standard operational mode 

2 Single-mode Pump failure condition Pump malfunction 

3 Single-mode Very high-temperature 

condition 

Elevated temperature readings 

4 Single-mode Faulty pump condition Degraded pump performance 

5 Single-mode Oil leakage condition Hydraulic fluid compromises 

6 Multi-mode Faulty pump and very 

high temperature 

Degraded pump performance concurrent 

with elevated temperatures 

7 Multi-mode Pump failure and very 

high temperature 

Pump malfunction in tandem with very 

high-temperature readings 

8 Multi-mode Oil leakage and very high 

temperature 

Compromised hydraulic fluid 

accompanied by high temperature 

conditions 

9 Multi-mode Oil leakage and pump 

failure 

Hydraulic fluid breaches coupled with 

pump malfunctions 

10 Multi-mode Faulty pump and oil 

leakage 

Degraded pump operations simultaneous 

with hydraulic fluid compromises 

11 Multi-mode Oil leakage, pump failure, 

and very high temperature 

Triple anomaly of hydraulic fluid 

breaches, pump malfunction, and elevated 

temperatures 

12 Multi-mode Faulty pump, oil leakage, 

and very high temperature 

Degraded pump operations alongside 

hydraulic fluid breaches and high 

temperature readings 

 

3. Noise Injection and Data Diversity: 

 

 In reality, aerospace sensor data seldom arrives in pristine form. To approximate the uncertainties and anomalies 

encountered in actual flight conditions, we introduce noise into the simulation outputs. Specifically, Gaussian noise, 

drift components, and random outliers are superimposed onto baseline sensor readings—such as pressure, temperature, 

and positional measurements—to rigorously test the resilience of both the imputation model and the fault classifiers. 

This ensures that the pipeline does not become overly specialized to idealized signals and remains robust under 

realistic data perturbations. 

 

 Consequently, the constructed dataset encompasses both nominal and faulty states, spanning a wide range of 

operational modes, environmental factors, and flight segments. Each data record is timestamped and linked to a known 

health label (e.g., healthy, pump failure, hydraulic leak), providing a rich training and validation platform for 

supervised machine learning methods. Figure 3 demonstrates how adding noise alters the sensor signal, comparing an 

ideal noise-free profile to one subjected to the introduced perturbations. 
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Fig. 3 Comparison of signal without and with noise injection in pump pressure. 

 

4. Dataset Composition and Scaling: 

 

The final dataset, comprising thousands of time-series samples, maintains a balanced representation of nominal 

and faulty scenarios. Approximately 30–40% of these instances include single or multimode failures, ensuring the 

model is exposed to a broad spectrum of anomalies. Multiple runs per scenario type enhance statistical robustness, 

allowing the model to learn stable, invariant patterns associated with each fault category. 

 

By systematically varying parameters—such as fluid properties, component aging effects, ambient conditions, and 

aerodynamic loads—the dataset mirrors the diversity found in a global aircraft fleet. This variation strengthens the 

generalization capacity of the ML models and provides an extensive testing ground for the explainability components. 

As a result, the solution is well-positioned to handle complex, multi-factorial failure scenarios with clarity and insight. 

C. Machine Learning Model 

 

The machine learning component is designed to accurately detect and classify landing gear faults under less-than-

ideal data conditions, while maintaining output stability and interpretability. Building on the two-tier methodology 

described in previous work [5], we refine model selection, hyperparameter optimization, and imputation strategies to 

accommodate noisy, partially corrupted sensor streams. 

 

1. Two-Tier System Overview 

The two-tier system comprises: 

• Primary Classification Model: A supervised classifier that distinguishes nominal (healthy) states from 

faulty ones. 

• Secondary Imputation Model: An auxiliary module that pre-processes or corrects sensor inputs when 

missing values, extreme outliers, or drift occur, ensuring a consistent and reliable feature set for the 

primary classifier. 

This layered configuration ensures that classification accuracy is not undermined by imperfect data—an inevitable 

challenge in real-world aviation scenarios. 

 

2. Primary Classification Model Design 

 

We evaluate multiple candidate algorithms, including gradient boosted trees (e.g., XGBoost), random forests, and 

kernel-based methods, ultimately selecting a model that balances accuracy, computational efficiency, and 

interpretability [11,31]. Gradient boosting, in particular, has shown strong performance in related prognostics and 

health management tasks due to its aptitude for capturing complex, nonlinear feature interactions [32,33]. 
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Let 𝑥 ∈ 𝑅𝑑 represent the input feature vector containing sensor measurements (pressure, temperature, pump speed, 

actuator position). The primary classification model 𝑓(𝑥) outputs a probability p∈[0,1] that the landing gear is in a 

faulty state: 

p=f(x)=Pr(fault ∣ x). 

 

A decision threshold τ converts this probability into a binary prediction: 

 �̂� = {1 𝑖𝑓 𝑝 ≥  𝜏0 𝑖𝑓 𝑝 < 𝜏  

Here, �̂� = 1 indicates predicted fault and, �̂� = 0 indicates a nominal state. The threshold τ can be tuned based on 
operational risk tolerance, such as minimizing false negatives for safety-critical components. 

Stratified cross-validation and either grid or Bayesian hyperparameter optimization help refine parameters like 

learning rate, tree depth, and regularization terms (L1, L2). Early stopping and regularization mitigate overfitting, 

ensuring robust generalization across diverse fault scenarios. 

3. Secondary Imputation Model and Data Restoration 

 

 Even with careful simulation and sensor design, missing or corrupted data is inevitable. The secondary imputation 

model leverages redundant sensor inputs and learned statistical patterns to reconstruct or replace erroneous values. 

For instance, if the pump speed sensor fails intermittently, correlations with other features (e.g., hydraulic pressure) 

can be exploited to estimate the missing pump speed �̅�𝑝𝑢𝑚𝑝 from an imputation function g: 

 �̅�𝑝𝑢𝑚𝑝  =  𝑔(𝑥_𝑝𝑢𝑚𝑝) 

 

 Where 𝑥_𝑝𝑢𝑚𝑝 denotes the feature vector excluding the pump sensor reading. Function g may be implemented via 

K-Nearest Neighbors (KNN) imputation, multivariate regression, or probabilistic models [34,35]. A KNN imputer, 

for example, substitutes a missing value with the mean or a weighted average of its k-nearest neighbors: �̅�𝑗 = 1𝑘 ∑ 𝑥𝑛,𝑗𝑛∈𝑁(𝑗)  

 

Where 𝑁(𝑗) is the set of indices corresponding to the k-nearest neighbors for the instance with a missing value in 

feature j. Executing the imputation step prior to classification ensures that anomalous inputs are corrected, preventing 

spurious alarms or misclassifications triggered by transient sensor glitches or noise spikes. 

D. Explainability Techniques 

 

 In a safety-critical domain like aviation, a fault prediction that lacks an accompanying explanation offers limited 

practical value. Engineers and maintenance personnel must understand why the model reached a particular conclusion, 

especially if it suggests immediate intervention. 

 

 We incorporate two model-agnostic explainability frameworks: LIME (Local Interpretable Model-Agnostic 

Explanations) [9] and SHAP (SHapley Additive exPlanations) [10]. Each provides a unique perspective. 

 

Rationale for Choosing LIME and SHAP: 

 

• LIME: LIME approximates the complex model locally by a simpler, more interpretable surrogate (e.g., a 

linear model) around the instance in question. For a specific input vector x, LIME perturbs it slightly and 

observes changes in the predicted probability, thereby inferring which features most influence the local 

decision boundary. This is particularly useful in isolating dominant sensors or parameters that tipped the 

model from “nominal” to “faulty.” 

• SHAP: Derives from cooperative game theory and assigns an importance value (SHAP value) to each feature, 

indicating its contribution to increasing or decreasing the predicted fault probability. Unlike global 



10 

 

importance measures, SHAP values are instance-specific and reveal the subtle interplay of features under 

particular conditions. This granularity is crucial, given that fault patterns may vary significantly with 

environmental or operational changes. 

 

By pairing the robustness of the two-tier ML model with these explainability techniques, we achieve not only reliable 

fault detection but also a clear, actionable understanding of the factors driving each prediction. 

V. Results 
A. Model Performance Metrics 

 

 The integrated pipeline—encompassing the two-tier machine learning architecture, robust data imputation 

strategies, and implemented explainability frameworks—demonstrates marked improvements over the baseline 

reported in our previous study [5]. Initially, the system achieved approximately 93.0% accuracy with 92.5% precision 

and 94.0% recall, but the enhanced approach presented here, tested against a more challenging dataset with ~20% 

faulty scenarios and deliberate noise injection, yields the following metrics: 

• Accuracy: 97.2% 

• Precision: 96.7% 

• Recall: 98.1% 

• F1-score: 97.4% 

 These gains underscore a more stable and reliable fault detection capability. The improved recall is particularly 

noteworthy in a safety-critical setting, as fewer missed faults translate directly into reduced operational risk. 

Simultaneously, the enhanced precision indicates a decrease in false alarms, improving maintenance efficiency and 

minimizing unnecessary inspections. The balanced improvement across precision and recall is reflected in a higher 

F1-score, confirming that these advances are not merely the result of tuning the model to excel at a single performance 

measure. 

 

Additionally, the pipeline’s resilience under adversity is evident. While previous configurations could suffer nearly a 

10% accuracy drop when confronted with corrupted data or partial sensor failures, the current system’s performance 
degradation remains below 3%. This robustness is directly attributable to the secondary imputation model and the 

synergistic two-tier design, both of which bolster the classifier’s stability in real-world operational contexts. 

 

 

B. Explainability Findings 

 

Fig 4. Forced SHAP plot for High-Temperature Hydraulic Pump Degradation 

 

 The integration of LIME and SHAP not only boosts interpretability but also enriches the diagnostic value of the 

model’s outputs. Instead of relying solely on aggregated accuracy metrics, maintenance engineers gain insight into 
the underlying reasons for each fault prediction. When applying SHAP to a representative subset of fault instances, a 

consistent pattern emerged: critical factors like hydraulic pressure fluctuations, elevated fluid temperatures, and 

reduced pump speeds surfaced as primary contributors to the model’s decision. By contrast, nominal cases displayed 

near-uniform SHAP values across features, signaling balanced and stable sensor readings consistent with normal 

operation. 

 

Example Scenario: 

 Consider a case classified as “High-Temperature Hydraulic Pump Degradation.” Figure 4 presents a force plot of 
SHAP values, illustrating that a fluid temperature exceeding nominal ranges by approximately 15% was the dominant 

influence, adding about +0.12 to the fault probability. Concurrently, a slight reduction in pump speed accounted for 
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an additional +0.08. LIME, approaching the same instance through local surrogate modeling, reinforced this 

interpretation by showing that crossing specific temperature and speed thresholds strongly favored a fault diagnosis. 

 

 These detailed explanations transcend generic alerts, empowering engineers to identify and prioritize exact root 

causes. For example, a high-temperature spike might suggest the need for more proactive fluid cooling measures, 

while a consistent drop in pump speed could indicate mechanical wear requiring targeted inspection or part 

replacement. To further illustrate such findings, feature-importance bar charts and SHAP-based visualizations 

effectively communicate how each factor shifts the model’s prediction toward or away from a fault scenario. By 
translating raw sensor patterns into comprehensible attributions, these interpretability methods facilitate more 

informed, timely, and cost-effective maintenance actions—meeting the core objective of deploying AI-driven fault 

diagnosis tools that are both accurate and transparent. 

VI. DISCUSSION 

 This study illustrates how advanced, data-driven fault diagnosis can be reconciled with the stringent operational 

and safety requirements of the aerospace sector. By integrating a two-tier machine learning system with robust 

imputation strategies and post-hoc explainability techniques (LIME and SHAP), we have not only improved fault 

detection accuracy but also delivered meaningful insights into the model’s decision-making process. This marks a 

pivotal move away from opaque “black-box” solutions and toward interpretable, trust-enhancing analytics. 

A. Interpretation of Results and Broader Context 

  

 The significant gains in classification metrics—improved accuracy, precision, recall, and F1-score—emphasize 

the reliability and adaptability of the two-tier ML framework. Features such as the secondary imputation model ensure 

stable performance even under challenging conditions of partial sensor failure and environmental noise. From a safety 

standpoint, the heightened recall is of particular interest: each avoided missed fault can prevent potentially costly or 

hazardous scenarios, thereby strengthening operational integrity and passenger confidence. 

 

Simultaneously, the deployment of LIME and SHAP ensures that these performance improvements are not achieved 

at the expense of interpretability. By revealing which features were most influential in driving the model’s decisions, 
our approach supplies maintenance engineers with actionable intelligence rather than cryptic probability scores. Such 

transparency aligns with a growing emphasis in the aerospace domain on explainable AI, where regulatory agencies 

and industry stakeholders seek clear evidence that humans can understand and validate algorithmic reasoning. 

B. Benefits and Trade-offs 

  

 A key benefit of incorporating interpretability into the fault diagnosis pipeline is the empowerment of human 

decision-makers. Instead of relying on raw alerts or aggregate metrics, engineers gain a granular understanding of 

sensor behaviors and their contributions to detected anomalies. This capability can significantly enhance maintenance 

protocols—technicians can target interventions more precisely, optimize inspection intervals, and refine part 

inventories based on known fault precursors. 

 

 Nonetheless, these advantages come with certain trade-offs. Implementing model-agnostic explanation methods 

like LIME and SHAP introduces additional computational overhead. Although relatively efficient, these methods can 

still increase latency and complexity, which may pose challenges for on-board analysis during time-sensitive flight 

operations. In some cases, it may be necessary to preprocess or generate explanations offline, or to reduce the 

frequency or depth of explanation generation, to ensure timely responses. 

C. Limitations and Assumptions 

  

 While the simulation-based dataset and fault scenarios were carefully designed to mimic a broad spectrum of real-

world conditions, they cannot fully capture the variability, uncertainty, and evolving nature of global fleet operations. 

The extent to which the observed improvements in fault detection and interpretability translate directly to in-service 

aircraft must be validated through real-world data or test rig experiments. Further empirical studies would bolster 

confidence in the model’s scalability and adaptability. 
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 Additionally, the chosen approach relies on established engineering thresholds and domain heuristics to interpret 

feature attributions effectively. Should the operational environment change drastically—for example, introducing new 

sensor types, fault modes, or aircraft architectures—retraining and retuning the models would be essential. Regular 

updates to reflect the latest maintenance practices and evolving regulatory frameworks would ensure that 

interpretability remains both accurate and contextually relevant. 

D. Broader Implications 

  

 The demonstrated ability to produce both high-fidelity fault predictions and transparent reasoning sets a precedent 

that extends beyond a single subsystem. As the aerospace industry moves toward condition-based maintenance and 

digital twin ecosystems, methods that couple robust predictive models with explanatory clarity will likely shape future 

PHM strategies. Regulatory scrutiny of AI systems is intensifying, and models capable of justifying their conclusions 

stand a better chance of meeting emerging standards for trustworthiness and accountability. 

 

 Such an approach may also inspire other safety-critical domains, from power grids and autonomous maritime 

vessels to nuclear plant monitoring and advanced manufacturing lines. Where complex machinery and distributed 

sensor networks generate torrents of data, the tools and principles outlined here—two-tier ML architectures, strategic 

imputation, and feature-level explanations—offer a scalable template for informed, data-driven decision-making. 

E. Future Directions 

  

 Looking ahead, there remain many opportunities for refinement and expansion. Integrating richer contextual 

factors (e.g., flight phase, environmental conditions, historical maintenance actions) could enrich both the predictive 

accuracy and the explanatory depth of the model. Advanced techniques might enable dynamic, role-specific 

explanations—tailored differently for engineers, inspectors, or upper management—further enhancing human-AI 

synergy. 

 

 Additionally, establishing standardized benchmarks, metrics, and certification processes for explainable and 

trustworthy AI in aerospace would provide a clearer framework for adoption. Collaboration with regulators, 

manufacturers, and industry consortia could accelerate the maturation and acceptance of these methods. Through 

continual iteration and validation, we can ensure that interpretable, robust fault diagnosis solutions remain at the 

forefront of safe and efficient aerospace operations. 

 

 In sum, this research demonstrates that reliability, performance, and interpretability need not be mutually 

exclusive. By bridging state-of-the-art ML techniques with domain-aware explanations, we present a pathway for 

deploying AI solutions that are not only accurate and consistent but also genuinely comprehensible and actionable in 

the demanding, safety-critical realm of aerospace maintenance. 

VII. Conclusion 

 This research affirms that achieving high-performance fault diagnosis in aerospace systems need not compromise 

interpretability or erode operator trust. By integrating a two-tier machine learning model with robust imputation 

strategies and state-of-the-art explainability methods (LIME and SHAP), we have demonstrated a cohesive 

methodology that bridges the gap between complex, data-driven analytics and the practical realities of aerospace 

maintenance operations. 

 

 Applied specifically to the aircraft landing gear subsystem—an essential, single-point-of-failure component—our 

approach yields measurable improvements in accuracy, precision, recall, and F1-score over previous benchmarks [5]. 

More importantly, these performance gains are complemented by transparent, instance-level explanations that allow 

maintenance engineers and technicians to understand precisely why a particular fault prediction was issued. Rather 

than relying solely on opaque alarms or aggregate metrics, operators can now pinpoint the most influential sensor 

readings and correlate them with known mechanical or environmental stressors. This interpretability not only enhances 

trust and credibility but also supports more proactive, cost-effective decision-making. 

 

 By demonstrating that interpretability and predictive power can coexist, we advance the state-of-the-art in 

trustworthy AI for aerospace health management. As industry standards evolve and regulatory bodies scrutinize AI 
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systems more closely, models capable of both accurate prediction and clear explanation stand poised to meet stringent 

compliance requirements and foster greater human-AI synergy. Although our proof-of-concept has been validated 

primarily in a simulation-based environment, the underlying principles of data quality assurance, robust fault 

detection, and feature-level transparency hold broad relevance for other subsystems in aviation and beyond. 

 

 In an era where aerospace fleets are increasingly instrumented and data-driven, this work provides a blueprint for 

designing AI solutions that not only excel in performance but also articulate their reasoning. The future of intelligent 

aerospace maintenance lies in solutions that empower human operators with meaningful insights—aligning advanced 

analytics, regulatory expectations, and operational demands to ensure safer, more reliable flight operations. 
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