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Abstract 

This research introduces a pioneering approach for intelligent real-time fault 

diagnosis in aircraft landing gear actuation systems. The continuous monitoring 

of landing gear health is crucial for ensuring safety, minimizing accidents, and 

optimizing maintenance schedules and costs. The complexity and 

interconnectivity of modern aircraft systems pose significant challenges to real-

time fault detection, particularly when sensors malfunction or are uncalibrated. 

To address these challenges, we propose an innovative two-tier machine 

learning framework specifically designed for diagnosing faults in landing gear 

systems, emphasizing hydraulic failure modes. Using a simulation-based 

approach, we generate data that mirrors complex hydraulic failures, laying a solid 

foundation for our machine-learning models. The primary model is geared 

towards sophisticated fault classification. Meanwhile, the secondary imputation 

model excels in managing missing or inconsistent data from malfunctioning or 

uncalibrated sensors. Remarkably, it employs and optimizes data even in the 

presence of these sensor issues, which traditionally compromise health 

assessments. By harnessing redundant sensors, a deviation from typical data 

omission strategies, we observed enhanced accuracy in primary classifiers; for 

instance, Decision Trees' accuracy increased from 95.88% to 98.76% after 

imputation. Further enriching this approach, we integrate Explainable AI (XAI) 

techniques, ensuring transparency and elucidating predictions for stakeholders. 

Notably, this research accentuates the pivotal roles of crucial sensors 

temperature and pump speed sensors in assessing landing gear health, 

championing their adoption in aviation systems. This study has profound 

implications, fostering heightened safety measures and spearheading cost-

effective, data-driven advancements in the aviation sector. 

Keywords: Intelligent real-time fault diagnosis, Aircraft landing gear actuation 

systems, Two-tier machine learning framework, Hydraulic failure modes, 

Simulation-based approach, Primary and secondary imputation model, 

Redundant sensors, Explainable AI (XAI) 

  



iii 

Acknowledgements 

I wish to convey my deepest gratitude to all who have played an indispensable 

role in the realization of this thesis, titled "Real-Time Fault Diagnosis in Aircraft 

Landing Gear: A Novel Two-Tier ML Approach with Intelligent Sensor Data 

Management and Explainable AI.” 

First and foremost, my heart brims with appreciation for my parents, who saw 

beyond our circumstances to recognize the potential in my dreams. To my father, 

whose unwavering emotional and financial support has been a pillar of strength, 

and to my mother, whose sacrifices, both seen and unseen, have been the wind 

beneath my wings – I owe the very foundation of this achievement. 

I am deeply indebted to my main supervisor, Dr Dmitry Ignatyev, whose guidance, 

expertise, and tireless dedication have been the guiding force throughout this 

journey. I also extend my sincere gratitude to my associate supervisor, Adolfo 

Perrusquia, for his invaluable insights, patience, and commitment to this work. 

He was always on his toe to get the best out of me! 

My appreciation extends to my peers, classmates, and especially my sister – your 

support, enriching discussions, and shared moments of enlightenment have been 

the sources of both inspiration and solace. Even as the youngest among you, I 

have felt the warmth of your collective embrace. 

On a philosophical note, I bow in gratitude to the Divine, for I believe in the 

universe's benevolent design and the guiding hand of God, which has constantly 

directed me towards the path of wisdom and perseverance. 

I wish to take a moment to acknowledge my own journey. The dedication, late 

nights, perseverance, and countless hours spent immersed in research weren't 

easy. This accomplishment serves as a testament to my passion and 

determination.  

Lastly, to you, the reader of this thesis – thank you for your time, interest, and the 

honor of your attention. Your engagement breathes life into these pages and 

actualizes the efforts poured into this research.  



iv 

Table of Contents 

Academic integrity declaration ............................................................................. i 

Abstract ............................................................................................................... ii 

Acknowledgements ............................................................................................ iii 

List of Figures .................................................................................................... vii 

List of Tables .................................................................................................... viii 

List of Equations ................................................................................................. ix 

List of Abbreviations ........................................................................................... x 

1 Introduction ...................................................................................................... 1 

1.1 Background of the Problem ...................................................................... 1 

1.2 Importance of the Problem ........................................................................ 2 

1.3 Overview of the Research Objective ......................................................... 3 

1.3.1 Objectives of the research .................................................................. 4 

1.3.2 Limitations and Assumptions .............................................................. 5 

1.4 Structure of the thesis ............................................................................... 6 

2 Literature Review ............................................................................................ 8 

2.1 Historical Overview of Landing Gear Health Monitoring ............................ 8 

2.2 Model-Driven vs. Data-Driven Approaches in Aircraft Health Monitoring

 ........................................................................................................................ 8 

2.2.1 Model-Driven Approaches .................................................................. 8 

2.2.2 Data-Driven Approaches .................................................................... 9 

2.3 AI and ML in Aircraft Health Monitoring: A Focus on Hydraulic Systems

 ........................................................................................................................ 9 

2.4 The Advent of Explainable AI (XAI) in Aircraft Health Monitoring ........... 10 

2.5 Limitations in Previous Works ................................................................. 10 

2.6 Gap in Current Knowledge ...................................................................... 11 

2.7 Justification for the Current Study ........................................................... 12 

3 Methodology .................................................................................................. 13 

3.1 Data generation ...................................................................................... 14 

3.1.1 Overview of simulation ..................................................................... 16 

3.1.2 Fault Injection into the Simulation .................................................... 17 

3.1.3 Sensor Noise Introduction ................................................................ 19 

3.1.4 Features of the collected Data ......................................................... 20 

3.2 Exploratory data analysis and Data pre-processing ................................ 21 

3.2.1 The Importance of Exploratory Data Analysis (EDA) in Handling 

Redundant Sensor Data ............................................................................ 21 

3.2.2 Data profile and distribution .............................................................. 23 

3.2.3 Correlation Analysis ......................................................................... 25 

3.2.4 Data Pre-processing ......................................................................... 29 

3.2.5 Rationale Behind Feature Selection and Tagging ............................ 29 

3.2.6 A Novel Approach to Redundancy ................................................... 30 



v 

3.3 Primary model – Classification model ..................................................... 31 

3.3.1 Logistic Regression .......................................................................... 31 

3.3.2 Polynomial Regression ..................................................................... 32 

3.3.3 Decision Tree ................................................................................... 33 

3.3.4 K-Nearest Neighbors (KNN) ............................................................. 34 

3.3.5 Random Forest ................................................................................ 34 

3.3.6 XGBoost ........................................................................................... 35 

3.4 Secondary model – Imputation model..................................................... 37 

3.4.1 The Crucial Role of the Imputation Model ........................................ 37 

3.4.2 Why the Imputation Model Matters: .................................................. 37 

3.4.3 Decoding the Imputation Model Architecture: ................................... 37 

3.4.4 From Imputation to Outlier Handling:................................................ 39 

3.4.5 Feeding the Primary Model: ............................................................. 39 

3.5 Implementing Explainability to the Decision ............................................ 39 

3.5.1 Rationale for Incorporating Explainable AI ....................................... 39 

3.5.2 Integration of SHAP for Interpretability ............................................. 40 

3.5.3 Analysis of Specific Instances .......................................................... 40 

3.5.4 Methodological Significance ............................................................. 40 

3.6 Performance Evaluation criteria of the model ......................................... 41 

4 Results and Discussion ................................................................................. 42 

4.1 Overview ................................................................................................. 42 

4.2 Primary Classification Model Results Evaluation .................................... 42 

4.2.1 Logistic Regression: ......................................................................... 42 

4.2.2 Polynomial Regression: .................................................................... 43 

4.2.3 Decision Tree: .................................................................................. 44 

4.2.4 KNN .................................................................................................. 44 

4.2.5 Random Forest ................................................................................ 45 

4.2.6 XGBoost ........................................................................................... 46 

4.3 Secondary Imputation Model Results ..................................................... 47 

4.3.1 Holistic Data Management ............................................................... 48 

4.3.2 Significance in Real-World Scenarios .............................................. 48 

4.3.3 Feature Relationships & System Dynamics ..................................... 48 

4.3.4 Enhancing Reliability and Confidence .............................................. 48 

5 Integration of Explainable AI Techniques ...................................................... 49 

5.1 Case in Point: Landing Gear Health Prediction of the 36536th Instance

 ...................................................................................................................... 49 

5.1.1 Understanding the Force Plot ........................................................... 49 

5.1.2 Interpreting the plot for the 36536th instance ................................... 50 

6 Significance of Key Sensors and Their Economic Implications ..................... 52 

7 Conclusion ..................................................................................................... 53 

8 Future Works and suggestions ...................................................................... 54 

9 Reference ...................................................................................................... 55 



vi 

Appendices....................................................................................................... 58 

Appendix A : Ethical approval letter .............................................................. 58 

Appendix B : Risk analysis ............................................................................ 59 

Appendix C : Project Timeline Overview ....................................................... 59 

Appendix D : Codes ...................................................................................... 61 

 

  



vii 

List of Figures 

Figure 3-1 High level system architecture ........................................................ 13 

Figure 3-2 Block diagram of the simulation ...................................................... 16 

Figure 3-3 Timeseries snapshot of a simulation showing the different phase of 
Landing gear operation .............................................................................. 17 

Figure 3-4 Fault injection strategy by different combination of 3 controlled 
parameters ................................................................................................ 18 

Figure 3-5 Comparison of signal without and with noise injection in pump 
pressure. .................................................................................................... 20 

Figure 3-6 Feature distribution in the dataset ................................................... 23 

Figure 3-7 The pie chart illustrates the distribution of different health conditions
 .................................................................................................................. 24 

Figure 3-9 Correlation Heatmap ....................................................................... 26 

Figure 3-10 Moving averages of normalized pump pressure and pump torque.
 .................................................................................................................. 27 

Figure 3-11 Moving averages of normalized main actuator pressures 1 and 2. 28 

Figure 3-12 Moving averages of normalized main column angle 1 and Main 
Actuator Position 2. ................................................................................... 29 

Figure 3-13 Data flow logic in Imputer model to primary model........................ 38 

Figure 5-1 Confusion Matrices of Logistic Regression ..................................... 43 

Figure 5-2 Confusion Matrices of Polynomial Regression ................................ 44 

Figure 5-3 Confusion Matrices of Decision Tree .............................................. 44 

Figure 5-4 Confusion Matrices of KNN ............................................................. 45 

Figure 5-5 Confusion Matrices of Random Forest ............................................ 45 

Figure 5-6 Confusion Matrices of XGBoost ...................................................... 46 

Figure 6-1 Forced SHAP plot for 36536th health status classification ............... 49 

Figure Appendix-1 Project timeline ................................................................... 60 

 

 

  



viii 

List of Tables 

Table 3-1 List of all features in the collected data and their details .................. 20 

Table 4-1 Performance of the model ................................................................ 42 

Table 4-2 Performance comparison ................................................................. 47 

Table 9-1 Risk Assessment and Mitigation Strategies for the Research Project
 .................................................................................................................. 59 

 

 

  



ix 

List of Equations 

Equation 3-1 ........................................................ Error! Bookmark not defined. 

Equation 3-2 ..................................................................................................... 32 

Equation 3-3 ..................................................................................................... 33 

Equation 3-4 ..................................................................................................... 34 

 

 

  



x 

List of Abbreviations 

AI Artificial Intelligence 

ML Machine Learning 

ICAO International Civil Aviation Organization 

PHM Prognostics and Health Management 

XAI 

ATA 32 

TapAir 

RPM 

EDA 

KNN 

XGBoost 

GBM 

L1 

L2 

SHAP 

 

Explainable Artificial Intelligence 

Air Transport Association Chapter 32: Landing Gear 

Hydraulic fluid-to-air ratio 

Revolutions Per Minute 

Exploratory Data Analysis 

K-Nearest Neighbors 

Extreme Gradient Boosting 

Gradient Boosting Machine 

Lasso Regression 

Ridge Regression 

SHapley Additive exPlanations 

 

 



 

1 

1 Introduction 

1.1 Background of the Problem 

Aircraft, epitomising the zenith of modern engineering, comprise an intricate 

matrix of systems and subsystems functioning cohesively to guarantee a secure 

flight. At the heart of this matrix lies the landing gear system, an indispensable, 

non-redundant element of an aircraft's architecture. Acting as a conduit between 

the aircraft and the ground, it encompasses a range of dynamic components, 

including the landing gear, wheels, brakes, shock absorbers, retraction 

mechanisms, control valves, and supplementary systems. These systems 

coalesce to facilitate secure landings and take-offs. 

The efficient functioning of landing gear systems is underpinned by an intricate 

matrix of mechanical, electrical, and hydraulic elements, all harmoniously 

orchestrated for peak performance. Notably, each component within an aircraft 

is usually complemented by a backup or redundant system to ensure continuity 

of operation in the event of a malfunction. For instance, should a primary thruster 

fail, the aircraft can seamlessly switch to an auxiliary thruster, enabling the flight 

to proceed to the nearest suitable landing site. This principle of redundancy 

applies to various subsystems, such as navigation, communication, power 

supply, and fuel systems, among others. However, for a paramount system like 

the landing gear, there exists no alternative or backup mechanism to fall back on 

in the event of failure. Consequently, it becomes imperative to constantly monitor 

the health of the landing gear in real-time. 

Traditionally, real-time health assessments have been conducted using both 

model-driven and data-driven approaches. However, utilising AI with data-driven 

techniques for monitoring health has proven to be more efficient, prompting a 

shift within the aviation industry towards diagnosing health using data-driven AI 

methodologies. These AI-powered ML models rely heavily on data procured from 

sensors. If a sensor malfunctions or sustains damage, the input data to the model 

is inevitably compromised, which can lead to inaccurate health status 

assessments by the model. For instance, should a system be functioning 
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optimally but the sensor suffers from wear and tear, the health assessment 

system may issue a false alarm. Conversely, a faulty sensor might lead the model 

to incorrectly predict a component failure, when in reality, the component is 

functioning as intended. This research endeavours to pioneer an innovative 

advanced two-tier model approach that accounts for data from malfunctioning or 

uncalibrated sensors, subsequently channelling this data into an ML classification 

model to yield accurate health assessments. This methodology markedly 

diverges from conventional ML practices. 

In the current research, undertaken in collaboration with our industrial partner, 

AIRBUS, we endeavour to construct a proof of concept for a data-driven fault 

diagnosis technique. This methodology is tailored to effectively detect and 

pinpoint anomalies in the Landing Gear Actuation System at the component level. 

Notably, the approach is proficient in managing data from malfunctioning or 

uncalibrated sensors. Beyond the confines of this proposal, our research aims to 

evaluate and contrast the efficacy of the classification model aligned with this two-

tier model strategy. An integral facet of our research is the incorporation of 

explainable AI, which stands paramount in augmenting result interpretability. This 

enhancement is pivotal in fostering the method's endorsement amongst 

technicians, engineers, and regulatory institutions. 

1.2 Importance of the Problem 

The health monitoring of landing gear presents not only a technological challenge 

but is also a crucial issue of passenger safety and economic efficiency. 

Malfunctions can precipitate accidents, endanger lives, disrupt flight schedules, 

and lead to substantial maintenance and repair costs. Every year, nearly 18% of 

all aviation accidents can be traced back to landing gear failure underscoring an 

urgent need for improved diagnostic systems. According to the International Civil 

Aviation Organization (ICAO), 756 accidents occurred during the landing phase 

due to faulty landing gear from 2013 to 2022. Of these, 51 were fatal, resulting in 

2072 fatalities [1]. 
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Currently, the Prognostics and Health Management (PHM) of these systems have 

been achieved through model-based methods and data-driven approaches. 

Model-based methods involve creating virtual models of the current system 

mathematically, to evaluate the system's performance. Although this approach 

requires an accurate mathematical model, time, and significant computational 

power, it has its drawbacks. These methods require an in-depth understanding 

of the system and its behavior, which may not always be feasible, especially in 

complex systems like an aircraft's hydraulic system. They may also fail to predict 

failures accurately on time due to unforeseen circumstances or factors not 

included in the model. For example, in the Saudi Airlines A330-200 incident in 

2018, the aircraft had to make an emergency landing due to a failure in the nose 

landing gear. This failure was detected and reported by model-based health 

monitoring 6 mins after the casualty occurred [2]. 

On the other hand, data-driven methods require less prior knowledge of the 

system and can uncover hidden information through data processing and 

analysis. However, the conventional way of health monitoring by ML models 

poses a challenge when it encounters faulty and uncalibrated sensor 

data/signals. 

In the A343 Helsinki Finland incident in 2009, a 'too hot temperature error' in the 

landing gear detected during aircraft takeoff turned out to be a hydraulic system 

leak into the flight. Although the aircraft landed safely, one of the two hydraulic 

lines was empty when the aircraft stopped [3]. This is a clear example of 

misinformation fed to a data-driven AI model by a faulty sensor. Similarly, this 

incident highlights the need for advanced real-time, data-driven robust health 

monitoring at the aircraft sub-component level. 

1.3 Overview of the Research Objective 

In this intricate scenario, the research aims to design a two-tire intelligent, robust, 

and data-driven machine learning methodology for real-time fault diagnosis in the 

landing gear actuation system. The focus is primarily on hydraulic failure modes. 

The proposed approach strives to accurately detect faults at the component level, 
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manage multimode failure cases, and handle data from faulty and uncalibrated 

sensors.  

The effectiveness of machine learning algorithms for this newly proposed model 

will be evaluated and compared. Additionally, the potential of integrating 

explainable AI techniques will be examined, which is crucial for improving result 

interpretability and hence, the method's acceptability by technicians, engineers, 

and regulatory bodies. The study will also highlight critical sensors for the health 

assessment of the landing gear, a pivotal aspect of any fault detection system. 

1.3.1 Objectives of the research 

To achieve the primary aim of the research, the following objectives have been 

delineated: 

a) Data Simulation for Multimodal Failures: Harness the power of 

simulation techniques to gather data across a plethora of multimodal 

hydraulic failure scenarios, replicating real-world conditions. 

b) Failure Scenario Definition and Benchmarking: Delve deep into the 

specific faulty scenarios, accurately defining them and establishing distinct 

benchmark parameters to discern and validate each scenario's nuances. 

c) Development of a Two-Tier ML Model:  

• Institute a primary model dedicated to the intricate task of fault 

classification. 

• Complement with a secondary imputation model, serving as an 

adept data preprocessing layer. This module identifies and rectifies 

null values and outliers in the input signal, leveraging redundant 

sensor data. The refined data then seamlessly transitions to the 

primary model, setting the stage for accurate predictions. 

d) Classifier Evaluation: Methodically assess the performance of an array 

of classifiers, determining their compatibility and effectiveness in the 

context of this research. 

e) Transparent Decision-Making with Explainable AI: Empower the 

chosen classifier to elucidate its decision-making process. By integrating 
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explainable AI mechanisms, we ensure transparency, fostering trust in the 

model's outputs. 

f) Sensor Significance Analysis: Unearth and spotlight the sensors that 

are indispensable for the health assessment of the landing gear. This 

endeavor promises to guide future endeavors, influencing the strategic 

design and integration of sensors within the aircraft landing gear 

architecture. 

Building on the aforementioned objectives, it's imperative to approach our 

research with a clear understanding of its inherent limitations and the 

assumptions underpinning it. In the following section, we delve into these aspects 

to ensure clarity and transparency throughout the investigative process. 

1.3.2 Limitations and Assumptions 

I. Simulation Over Real-Time Data: Our primary limitation lies in the 

absence of real-time data pertaining to the extension and retraction of 

landing gear. While actual world data would undeniably be a more 

accurate medium for training the model, we have sought to approximate 

this by relying on simulation. Within this simulation, we've endeavoured to 

mimic real-world scenario signals, incorporating noise and anomalies into 

the signal to lend it authenticity. 

II. Scope of Failure Scenarios: For the purpose of this research, our scope 

is restricted to only hydraulic failures, encompassing 12 multimodal failure 

case scenarios. In the real-world context, there's the potential for a wider 

range of failure modes, including but not limited to structural failures. 

These structural failures are not encompassed within the purview of our 

current investigation. 

III. Sensor Malfunction Parameters: Our analysis assumes two primary 

modes of sensor malfunction: 

a. Faulty or non-operational sensors, which produce null values. 

b. Uncalibrated sensors, yielding values that are unrealistically high or 

low in comparison to typical readings. 

It's crucial to note that in real-world applications, additional malfunctioning modes 

could exist. For instance, sensor signals may experience interference due to 

external factors such as electrical or magnetic fields. Our model, in its current 

state, does not account for such complexities. 
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Having elucidated our objectives and the inherent limitations, it's worth reiterating 

the broader implications of this research. The aviation industry stands at a pivotal 

juncture where every innovation, no matter how incremental, can lead to 

monumental shifts in safety, efficiency, and overall passenger experience. By 

realising the goals set out for this study, we envisage a profound contribution to 

the realm of aviation. Enhanced safety protocols, fewer flight disruptions, and 

diminished maintenance costs are not just aspirational targets; they are 

keystones for a future where air travel is consistently reliable, efficient, and above 

all, safe. 

The ramifications of this research extend beyond the technical domain. They 

resonate deeply with the societal and economic fabric of aviation. In an industry 

that moves millions every day, a nuanced approach towards improved safety and 

efficiency is tantamount to a giant stride forward. 

As we transition to the subsequent sections, the literature review will shed light 

on previous endeavours, studies, and innovations that have shaped our current 

understanding. This exploration will anchor our research within the broader 

discourse, providing a foundation upon which we build our study. 

1.4 Structure of the thesis 

This thesis delves into the nexus of landing gear health diagnostics and advanced 

machine learning methods: 

• Chapter 1 introduces the backdrop, significance, and objectives of landing 

gear fault diagnosis while also touching on its constraints. 

• Chapter 2 presents a literature review, identifying gaps in the current 

knowledge and justifying this study. 

• Chapter 3 details the methodology, from data generation and feature 

extraction to the use of various classification and imputation models, 

highlighting the role of explainability in decisions. 

• Chapter 4 offers a glimpse into the research's risks and presents a 

timeline for its progression. 

• Chapter 5 provides the results of the models, offering evaluations within 

the realm of landing gear diagnostics. 

• Chapter 6 delves into explainable AI techniques, using a case study for 

emphasis. 

• Chapter 7 shifts to discussing the economic implications of key sensors in 

aircraft maintenance. 
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• Chapter 8 concludes with insights, while Chapter 9 sketches out future 

research avenues, including real-world data integration and environmental 

factor considerations. 

The main narrative is complemented by references and appendices, with an 

ethical approval letter and research specifics. This work aims to blend machine 

learning with aircraft diagnostics for a safer and economically efficient aviation 

landscape. 
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2 Literature Review 

2.1 Historical Overview of Landing Gear Health Monitoring 

The landing gear system, being a critical component of aircraft, has been the 

subject of extensive research and development over the past decades. 

Historically, health monitoring of the landing gear was primarily based on periodic 

inspections and maintenance schedules [4]. However, with the advent of 

technology, real-time health monitoring systems have gained prominence. 

Phillips et al. (2011) discussed the evolution of landing gear health monitoring 

systems, highlighting the transition from manual inspections to automated 

systems [5]. The study emphasized the importance of real-time monitoring in 

enhancing aircraft safety and reducing maintenance costs. 

Boniol et al. (2016) provided a comprehensive review of the mechanical and 

hydraulic components of the landing gear system. They discussed the challenges 

associated with monitoring these components and underscored the need for 

advanced diagnostic systems [6]. 

2.2 Model-Driven vs. Data-Driven Approaches in Aircraft Health 

Monitoring 

2.2.1 Model-Driven Approaches 

Historically, model-driven techniques, grounded in mathematical or physical 

models, have been the mainstay. These models, derived from fundamental 

principles, offer predictions based on well-established scientific laws. 

Kang et al. (2023) delved into the intricacies of model-driven techniques for 

predicting landing gear failures. Their research highlighted the challenges of 

modeling complex interactions within the landing gear system. They argued that 

while these models provide a structured framework, their rigidity can sometimes 

be a limitation, especially when faced with unforeseen system behaviors [7]. 

Chen et al. (2020) presented a comprehensive model of an aircraft's hydraulic 

system. Their study demonstrated the efficacy of model-driven approaches in 
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predicting system behavior under various conditions but also underscored the 

challenges in achieving high model fidelity [8]. 

2.2.2 Data-Driven Approaches 

With the proliferation of sensors and advancements in computational techniques, 

data-driven methodologies have gained significant traction. 

David and Nita (2020) showcased the potential of deep learning algorithms in 

aircraft health monitoring. Their study emphasized the superior performance of 

data-driven models, especially in identifying nuanced faults that traditional 

models might overlook. They highlighted the adaptability of these models, 

especially when trained with diverse and extensive datasets [9]. 

Dangut et al. (2023) took a critical look at data-driven health monitoring systems 

in aviation. Their research underscored the importance of data quality and robust 

preprocessing techniques. They pointed out that while data-driven models are 

powerful, their efficacy is heavily contingent on the quality of the input data. Faulty 

sensors or inconsistent data can significantly compromise the accuracy of these 

models [10]. 

While both methodologies have their strengths, the performance of then in real-

time on board systems discourse seems to be leaning towards the potential of 

data-driven techniques. The adaptability, scalability, and pattern recognition 

capabilities of these models make them particularly suited for modern aircraft 

health monitoring systems. However, as Zhao et al. (2022) pointed out, the 

success of these models hinges on the quality of data, emphasizing the need for 

robust data acquisition and preprocessing systems [11]. 

2.3 AI and ML in Aircraft Health Monitoring: A Focus on 

Hydraulic Systems 

The integration of Artificial Intelligence (AI) and Machine Learning (ML) in aircraft 

health monitoring with the advancement of data-driven approach, especially 

concerning hydraulic systems, has been a transformative force in recent years. 



 

10 

Jacazio et al. (2018) explored the application of ML algorithms specifically tailored 

for hydraulic system diagnostics. Their research highlighted the potential of data-

driven models in detecting subtle anomalies within the hydraulic flow and 

pressure data, which traditional methods might overlook [12]. 

Kenan and Zhao (2023) further emphasized the advantages of using deep 

learning techniques, such as Convolutional Neural Networks (CNNs), for 

analyzing time-series data from hydraulic sensors. Their methodology 

demonstrated superior accuracy in predicting hydraulic system failures, 

especially in scenarios with complex, non-linear patterns [13]. 

Swischuk and Allaire (2019) discussed the challenges posed by sensor drift, 

calibration errors, and outright failures in hydraulic systems. Their study revealed 

that even minor discrepancies in sensor readings could lead to significant 

misdiagnoses, potentially compromising aircraft safety [14]. 

2.4 The Advent of Explainable AI (XAI) in Aircraft Health 

Monitoring 

The black-box nature of many AI models, especially deep learning architectures, 

has been a point of contention, particularly in critical applications like aviation. 

Shukla et al. (2020) championed the need for transparency in AI-driven aircraft 

health monitoring systems. Their research underscored the importance of 

understanding the decision-making process of AI models, especially when 

human lives are at stake [15]. 

2.5 Limitations in Previous Works 

The vast landscape of aviation research has seen numerous studies focusing on 

the health monitoring of aircraft systems, particularly the landing gear. However, 

a closer examination of the existing literature reveals certain limitations: 

1. Scope of Research: While many studies have delved into the intricacies 

of the landing gear system, their scope has often been restricted. For 

instance, provided an in-depth analysis of the mechanical and hydraulic 



 

11 

components but did not venture into the realm of sensor malfunctions and 

their implications. 

2. Sensor Malfunctions: The challenge posed by sensor malfunctions, a 

critical aspect highlighted in the introduction, has been acknowledged but 

not comprehensively addressed. Swischuk and Allaire (2019) discussed 

the implications of faulty sensors but stopped short of proposing a robust 

solution to handle such anomalies [14]. 

3. Hybrid Methodologies: The debate between model-driven and data-

driven approaches has dominated the discourse. However, the potential 

of hybrid methodologies, which combine the strengths of both approaches, 

remains largely unexplored. 

4. Real-world Application: Much of the existing research has been 

theoretical, with limited real-world application or testing. The gap between 

laboratory findings and real-world scenarios is evident. 

2.6 Gap in Current Knowledge 

The current body of knowledge, while extensive, reveals a discernible gap: 

1. Handling Faulty Sensor Data: Despite the advancements in AI and ML 

for aircraft health monitoring, there's a pressing need for methodologies 

that can effectively handle and rectify faulty sensor data in real-time. 

2. Two-Tier ML Model: The concept of a two-tier ML model, as highlighted 

in the introduction, remains a novel idea. Current research has not 

ventured into the development of such a model that first rectifies anomalies 

in sensor data before making health assessments. 

3. Explainable AI: The integration of explainable AI in aircraft health 

monitoring is still in its nascent stages. While AI models can make 

predictions, their decision-making processes remain opaque, making it 

challenging for technicians and engineers to trust and interpret the results. 

 



 

12 

2.7 Justification for the Current Study 

The landing gear, emblematic of engineering prowess, has been at the center of 

events that highlight the vulnerabilities in our current systems. Instances like the 

A343 Helsinki Finland incident and the Saudi Airlines A330-200 event are not just 

historical markers but stark reminders of the pressing need for advanced 

solutions. 

In the age of data-driven decision-making, the traditional techniques of machine 

learning are rapidly evolving. The old methods, which often struggled with 

handling highly correlated redundant sensor data, are giving way to more 

sophisticated and intelligent data management systems. The introduction of 

explainable AI is a game-changer. It not only enhances the accuracy of 

predictions but also demystifies the decision-making process, fostering trust and 

facilitating easier interpretation by technicians and engineers. 

The need for such advancements is palpable. As aircraft systems grow more 

complex, the demand for transparent, reliable, and efficient health monitoring 

systems becomes paramount. This research is not just about refining 

methodologies; it's about revolutionizing the way we perceive and interact with 

aviation systems. 

The aspiration to provide a proof of concept, to showcase how the integration of 

explainable AI and intelligent sensor data management can transform the 

aviation industry, is the driving force behind this research. We envision a future 

where every flight is not just a journey but a testament to innovation, safety, and 

unwavering trust. In this pursuit, we aim to redefine the paradigms of aviation 

safety and set new benchmarks for the industry. 
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3 Methodology 

In the realm of predictive maintenance, the precision and clarity with which one 

can predict a system's health can dramatically influence operational efficiency, 

safety, and costs. As technological advancements continue to surge, the domain 

has seen a pivotal shift towards leveraging sophisticated machine learning 

models to harness data-driven insights. However, challenges such as data 

imperfections often impede the application of these models in real-world 

scenarios. Addressing these concerns requires a systematic, well-thought-out 

approach, which our research offers. 

 

Figure 3-1 High level system architecture 

To facilitate a seamless understanding of our proposed approach, we begin our 

methodology with a high-level schematic representation in the Figure 3-1. This 

diagrammatic overview elucidates the interplay between our two-tier model 

system: the primary classification model, dedicated to fault classification, and the 

secondary imputation model, designed to handle data imperfections through 

intelligent preprocessing techniques. With this visual aid, readers can garner a 
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holistic understanding of the data flow, model interactions, and the sequence in 

which the system operates, before diving deep into each methodological 

component. 

With this foundation, let's proceed to elucidate the intricacies of our methodology, 

commencing with the data acquisition phase. 

3.1 Data generation 

The cornerstone of our research methodology is the meticulous collection of data 

that portrays a broad range of operational states associated with landing gear 

extension and retraction systems.  

The absence of real-time faulty landing gear operations data poses considerable 

challenges, that underscore the pivotal role of simulation tools. Such tools not 

only present an avenue to simulate the dynamics of landing gear operations with 

precision but also facilitate the accumulation of crucial data for the training of ML 

models. In our approach, we utilize the "Landing Gear Model in Simscape" 

provided by Simulink MATLAB. This tool, a product of Steve Miller's team's 

expertise, stands out for its accuracy and comprehensive representation of the 

system dynamics. 

For the robust training of our ML model, it's essential to simulate a wide array of 

scenarios, particularly those indicative of failure states. Our model was adapted 

to encompass 370 distinct failure scenarios, systematically categorized into 12 

defined failure types. Given that real-world environments are often affected by 

noise, our simulations deliberately introduce noise to sensor readings, enhancing 

the realism of our dataset. 

Our design encompasses both singular mode and multimode failure conditions, 

ensuring the dataset captures a broad spectrum of system behaviors, vital for the 

machine learning model's efficacy. 

I. Single-mode scenarios encompass: 

a) Standard operational mode (No fault condition). 
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b) Pump malfunction (Pump failure condition). 

c) Elevated temperature readings (Very high temperature condition). 

d) Degraded pump performance (Faulty pump condition). 

e) Hydraulic fluid compromises (Oil leakage condition). 

II. Multi-mode failure scenarios amalgamate these singular conditions 

as follows: 

f) Degraded pump performance concurrent with elevated temperatures 

(Faulty pump and very high temperature). 

g) Pump malfunction in tandem with very high-temperature readings (Pump 

failure and very high temperature). 

h) Compromised hydraulic fluid accompanied by high temperature conditions 

(Oil leakage and very high temperature). 

i) Hydraulic fluid breaches coupled with pump malfunctions (Oil leakage and 

pump failure). 

j) Degraded pump operations simultaneous with hydraulic fluid 

compromises (Faulty pump and oil leakage). 

k) Triple anomaly of hydraulic fluid breaches, pump malfunction, and 

elevated temperatures (Oil leakage, pump failure, and very high 

temperature). 

l) Degraded pump operations alongside hydraulic fluid breaches and high 

temperature readings (Faulty pump, oil leakage, and very high 

temperature). 

In the upcoming subsections, we will elaborate on the simulation's overview, 

delve into fault and noise injections, and finally highlight the distinct features of 

our collected data. 
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3.1.1 Overview of simulation 

The employed simulation model accurately reflects the ATA 32 standard in 

aircraft systems, which covers all aspects of landing gear, including hydraulics, 

structure, brakes, and steering. For this study, however, we focus solely on the 

hydraulic system. A top-level layout of the simulation component is provided in 

Figure 3-2 below. 

 

Figure 3-2 Block diagram of the simulation 

It comprises a single hydraulic pump powered by an electric motor. The hydraulic 

reservoir supplies fluid to the main actuator, responsible for extending and 

retracting the landing gear based on pilot commands. Upon deployment, a 

secondary or locking actuator activates, securing the main landing gear in place, 

which is crucial for safety. The simulation also includes several sensors that 

measure factors like pressure, angular movement, valve status, and extension 

levels. A time series snapshot of the landing gear extension and retraction cycle 

simulation is given below figure 3-3 for better understanding. 
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Figure 3-3 Timeseries snapshot of a simulation showing the different phase of 

Landing gear operation 

This simulation incorporated a feature that allows us to adjust the temperature of 

the hydraulic fluid. This is to study how temperature changes might affect the 

system's performance. Additionally, the TapAir feature lets us modify the 

hydraulic fluid-to-air ratio, simulating various real-world conditions, which will be 

discussed in detail in the Fault Injection sub section later. To simulate different 

failure cases, we'll be adjusting three primary parameters: the pump speed, the 

fluid temperature, and the TapAir ratio. 

3.1.2 Fault Injection into the Simulation 

Our research delves deeply into simulating conditions within a hydraulic system, 

both faulty and non-faulty. We focus on three core operational parameters: TapAir 

ratio, pump speed, and system temperature. We explore a range of scenarios, 

from typical normal operations to compound faults which is depicted in the figure 

3-4.  
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Figure 3-4 Fault injection strategy by different combination of 3 controlled 

parameters 

To provide clarity, we have defined 12 scenarios below, of which 11 are faulty: 

a) No Fault: This baseline scenario depicts the hydraulic system's routine 

functioning. It operates at temperatures oscillating between 50 to 80 

degrees Celsius, which aligns with the conventional operating range of 

hydraulic systems. The TapAir ratio, indicative of the air-to-oil proportion 

in the reservoir, varies from 0.003 to 0.006, synonymous with a system in 

good health. The pump maintains a standard speed of 300 RPM, denoting 

efficient performance. 

b) Oil Leakage: An increased TapAir ratio (0.80 to 0.95) indicates significant 

oil displacement, suggesting leakage. 

c) Faulty Pump: The pump speed drops to 50-200 RPM, indicating 

malfunction, while other parameters remain standard. 
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d) Pump Failure: The pump speed hits 0 RPM, indicating complete 

cessation, with other parameters unchanged. 

e) Very High Temperature: System temperature surges to 223-250°C, 

hinting at potential overheating or cooling failure. 

f) Faulty Pump and Oil Leakage: A combined scenario of reduced pump 

speed (50-200 RPM) and elevated TapAir ratio (0.80 to 0.95). 

g) Faulty Pump and Very High Temperature: Reduced pump function 

paired with significantly high temperatures. 

h) Oil Leakage and Very High Temperature: Combines significant oil 

leakage with elevated temperatures. 

i) Oil Leakage and Pump Failure: Portrays complete pump halt coupled 

with oil displacement. 

j) Pump Failure and Very High Temperature: Highlights a halted pump 

and skyrocketing temperatures. 

k) Oil Leakage, Pump Failure, and Very High Temperature: Combines 

pronounced oil leakage, complete pump halt, and extreme temperatures. 

l) Faulty Pump, Oil Leakage, and Very High Temperature: Captures a 

malfunctioning pump, significant oil leakage, and heightened 

temperatures. 

3.1.3 Sensor Noise Introduction 

Within our utilized simulation, sensors were characterized as ideal, devoid of any 

noise. Contrarily, in practical applications, sensors invariably exhibit noise in their 

outputs. To enhance the fidelity of our simulation to real-world scenarios, we 

incorporated components that superimpose noise onto the sensor signals. 

Specifically, we introduced a 15% white noise to each sensor's output. This 

adjustment ensures our simulation more accurately reflects the inherent 

interference often encountered in actual sensor systems. Figure 3-5 plot of an 

ideal signal, free from noise, against one subjected to our introduced noise, 

illustrating the tangible modifications can be seen.  
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Figure 3-5 Comparison of signal without and with noise injection in pump 

pressure. 

3.1.4 Features of the collected Data 

The comprehensive dataset extracted from a series of simulations consists of 10 

features, one of which is 'health,' the target variable for our classification model. 

These features serve as inputs for the machine learning model. Detailed 

information about each feature, including the corresponding sensor and its 

location within the simulation, is provided in the table 3-1 below: 

Table 3-1 List of all features in the collected data and their details 

 Feature Sensor Location 

1 Time Independent 

feature 

 

2 Main Actuator 

Pressure 1 

Pressure sensor Main Actuator  

3 Main Actuator 

Pressure 2 

Pressure sensor Main Actuator valve  
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4 Pump Pressure Pressure sensor Hydraulic tank 

5 Main Column Angle 

1 

Rotary encoder junction of landing gear 

housing and main actuator 

6 Main Actuator 

Position 2 

Linear Variable 

Differential 

Transformers 

(LVDT) 

Main Actuator 

7 Pump Torque Optical Torque 

Sensors 

Mounted on top of pump 

motor 

8 Temperature Input parameter  

9 Pump Speed Input parameter  

10 Health Condition label  

Further association of these features and their importance in assessing the health 

of the system will be explored in the next section: Exploratory data analysis and 

Data pre-processing. 

3.2 Exploratory data analysis and Data pre-processing 

Exploratory Data Analysis (EDA) is a fundamental step in the data science 

pipeline. It involves the visual and quantitative inspection of data to understand 

its structure, relationships, anomalies, and patterns. 

3.2.1 The Importance of Exploratory Data Analysis (EDA) in Handling 

Redundant Sensor Data 

Exploratory Data Analysis (EDA) is more than just an initial step in the data 

analysis pipeline; it's the foundation upon which the entire research is built. When 

dealing with complex systems like aircraft landing gear, the sheer volume and 

intricacies of sensor data can be overwhelming. EDA provides a lens to view, 

understand, and decipher these intricacies. 

I. Unveiling Redundancies: 
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a. In aircraft systems, redundancy is deliberately built for safety. 

Multiple sensors often measure similar or related physical 

quantities. Through EDA, we can identify these redundancies by 

observing high correlations between features. 

b. By visualizing and quantifying relationships, EDA allows us to 

pinpoint which sensors are producing redundant information. This 

knowledge isn't just academic; it's vital for maintenance, cost 

savings, and ensuring efficient data processing. 

II. Informing Data Strategy: 

a. Traditional Machine Learning wisdom often advises dropping highly 

correlated features to prevent multicollinearity, which can 

destabilize some models. However, in the real world, especially in 

safety-critical systems like aircraft, every piece of data is invaluable. 

b. By using EDA to understand the nature and extent of these 

correlations, we can devise innovative strategies that harness, 

rather than discard, this redundancy. 

III. Leveraging Redundancy for Robustness: 

a. The novel approach in this study exemplifies the above point. 

Instead of discarding correlated sensor readings, we are training 

primary models with main features and then using the correlated, 

redundant features to train secondary imputation models. 

b. This method ensures two critical outcomes:  

Improved Model Robustness: If a primary sensor fails, the 

secondary, correlated sensor can provide vital backup, ensuring 

continuous monitoring.  

Efficient Use of Data: Instead of discarding valuable sensor data, 

this approach incorporates it, enhancing the model's richness and 

reliability. 
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3.2.2 Data profile and distribution 

I. Data Size: 

Number of Samples: 671,907 

Number of Features: 10 

II. Data Distribution 

The histograms below in the figure 3-6 provide a visual representation of the data 

distributions for each numerical feature in the dataset: 

 

Figure 3-6 Feature distribution in the dataset 
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The histograms in the figure 3-6 above provide insights into the distribution of 

each numerical feature: 

a) pumpSpeed: Appears to be multi-modal, indicating that there are specific 

speed values at which the pump frequently operates. 

b) pump_pressure: Has a similar distribution as the main actuator 

pressures, being right-skewed. 

c) pump_torque: Right-skewed distribution with a high frequency of lower 

values. 

d) main_act_pressure_1 & main_act_pressure_2: Both show a right-

skewed distribution with a high frequency of values near the lower end and 

a long tail towards the higher values. 

e) main_col_angle_1: Displays a bimodal distribution, with two prominent 

peaks, one near 0 and the other near 90. 

f) main_act_position_2: Centers around -0.1 to 0.1, with a roughly 

symmetrical distribution. 

g) temp: Shows a multi-modal distribution, with multiple peaks observed. 

III. Health distribution 

 

 

Figure 3-7 The pie chart illustrates the distribution of different health conditions 
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It's evident that there's a relatively even distribution among the various categories 

as seen in the pie chart from the figure 3-7, with each category having a 

representation of around 54,000 to 60,000 samples. 

3.2.3 Correlation Analysis 

In our analysis, the correlation values are derived using the Pearson Correlation 

Coefficient, a measure of linear association between two variables; denoted as r. 

The formula for the Pearson Correlation Coefficient is: 

𝑟 =
∑(𝑥𝑖 − 𝑥) . (𝑦𝑖 − 𝑦)

√∑(𝑥𝑖 − 𝑥)2 .  ∑(𝑦𝑖 − 𝑦)2
 
 

(Equation 3-1) 

 

Where r = Correlation coefficient 

xi = values of x variable in a sample 

𝑥 = mean of x variable in a sample 

yi = values of y variable in a sample 

𝑦 = mean of y variable in a sample 

The coefficient can vary between -1 and 1, providing insights into the nature of 

the relationship, coefficient 1 Indicates a perfect positive linear relationship, 

whereas -1 indicates negative linear relationship and 0 suggests no linear 

association between the two variables  

Refer to Figure 3-9 below, which displays a heatmap visually representing the 

correlation coefficients among the numerical features of our dataset. 
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Figure 3-8 Correlation Heatmap 

From the heatmap in Figure 3-9, there are several key takeaways: 

The correlation heatmap elucidates the intricate relationships among the 

dataset's features: 

1. High Correlations: Feature pairs like pump_pressure & pump_torque, 

main_act_pressure_1 & main_act_pressure_2, and 

main_col_angle_1 & main_act_position_2 exhibit strong correlations. 

2. Distinct Features: Some features, notably pumpSpeed and 

temperature, show limited correlation with others, underscoring their 

unique significance. 

Spotting and Understanding Redundancies: 
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• Pump Pressure and Pump Torque: With a correlation of 0.998381, these 

two exhibit an almost perfect positive relationship. A time series plot of 

pump pressure and torque of one of the cases is plotted in the figure 3-10, 

where they exhibit the identical pattern. This suggests that pump pressure 

can precisely predict pump torque, potentially rendering one redundant in 

predictive modeling. 

 

Figure 3-9 Moving averages of normalized pump pressure and pump torque. 

• Main Actuator Pressure 1 and Main Actuator Pressure 2: A robust 

positive correlation of 0.996350 signifies that one can reliably predict the 

other, hinting at potential redundancy. A time series plot of Main Actuator 

Pressure 1 and Main Actuator Pressure 2 of one of the cases is plotted in 

the figure 3-11, where they exhibit nearly the identical pattern. 
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Figure 3-10 Moving averages of normalized main actuator pressures 1 and 2. 

• Main Column Angle 1 and Main Actuator Position 2: A significant 

negative correlation of -0.983905 suggests an impeccable inverse 

relationship. As one variable's value rises, the other's falls, indicating 

mutual predictability. A time series plot of Main Column Angle 1 and Main 

Actuator Position 2 of one of the cases is plotted in the figure 3-12, where 

they exhibit exact mirror pattern. 
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Figure 3-11 Moving averages of normalized main column angle 1 and Main 

Actuator Position 2. 

• Features like temp and pumpSpeed have relatively low correlations with 

other features, suggesting they are more unique and independent without 

any redundancy. We call these features as crucial or controlled features. 

Note that these two are the input variables that we used in simulation to 

simulate wide range of failure scenarios. 

3.2.4 Data Pre-processing 

The raw data retrieved from the simulations does not adhere to consistent time 

intervals. To rectify this inconsistency, we employed a downsampling technique, 

standardizing the data to fixed time steps at a frequency of 50 Hertz. This strategy 

is a familiar approach in time-series data processing and closely mimics data 

harvested from real-world sensors operating at a 50 Hz frequency. Consequently, 

this operation furnished a comprehensive dataset consisting of 671,908 entries 

across 23 columns. 

3.2.5 Rationale Behind Feature Selection and Tagging 

Discarding the Temporal Element - Our primary focus is to train a model for 

classification that isn't influenced by temporal dynamics. As such, the 'time' 

feature from the dataset is omitted. This decision ensures our model evaluates 

the health of the system based on its current state, rather than its historical 

trajectory. By abstracting away from time, our model becomes robust to various 

temporal disturbances and focuses on the inherent properties of the system. 

Target Variable - Health of the System: The 'health' feature serves as our target 

variable. This choice aligns with our overarching objective: understanding and 

predicting the system's health status. 

Categorizing the Features: 

1. Controlled Features: Pump Speed and Temperature: These are 

essential input parameters that play a pivotal role in determining the 

system's health. Altering these parameters in simulations, especially in 
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conjunction with the 'TapAir' parameter, creates various failure scenarios. 

Their significance is accentuated by the fact that they don't have 

corresponding redundant features, making them indispensable in 

monitoring the landing gear's health. 

2. Main Features: Pump Pressure, Main Actuator Pressure 1, and Main 

Column Angle 1: These features offer direct, tangible insights into the 

system's current state. 

3. Redundant Features: Pump Torque, Main Actuator Pressure 2, and 

Main Actuator Position 2: These features, due to their high correlations 

with main features, can mirror vital system information. Their significance 

lies in their backup capabilities. In scenarios where a primary sensor might 

fail or malfunction, these redundant sensors ensure that monitoring 

remains uninterrupted, thereby enhancing system reliability. 

3.2.6 A Novel Approach to Redundancy 

Traditional data science methodologies often discard highly correlated features 

to simplify models and avoid multicollinearity. However, our approach 

acknowledges the real-world importance of redundancy, especially in safety-

critical systems like aircraft landing gears. 

Here's our innovative two-pronged strategy: 

A. Harnessing Main and Controlled Features: The primary models are 

trained using these features, capturing the core characteristics of the 

system. 

B. Leveraging Redundant Features: Secondary imputation models are 

trained using these features. Their primary role is to act as intelligent 

backups. Should a main sensor fail, the model can seamlessly draw 

information from these correlated, redundant sensors, ensuring 

uninterrupted monitoring. 

In conclusion, our methodology in feature selection and tagging isn't merely a 

series of data-driven choices. It's a reflection of a deeper understanding of the 
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system's workings and an acknowledgment of the realities of sensor-based 

monitoring. By intelligently utilizing redundancies and categorizing features, we're 

laying the foundation for a model that's both robust and resilient. 

To ensure a rigorous modeling process, our dataset is methodically divided: 70% 

for training, laying the foundation for model building; 20% for testing, offering an 

initial assessment of the model's capabilities; and the final 10% reserved for 

evaluation. This validation dataset remains entirely unseen by the model during 

its training phase. Consequently, it serves as an excellent tool for gauging true 

model performance, providing insights into its real-world applicability and 

reliability. 

Having established the foundational structure by data preprocessing, we now 

transition to the heart of our research endeavor: the modeling process. The 

choice of model and its architecture plays a paramount role in harnessing the 

insights embedded within the data. Let's delve into the specifics of the model 

selected for training and its underlying rationale. 

3.3 Primary model – Classification model 

The objective of the primary model is to predict the health status of the aircraft's 

landing gear system based on given features. To achieve this, we've considered 

a range of classifiers, each with unique mathematical foundations, to compare 

and study the optimal predictive accuracy and robustness offered by them. 

3.3.1 Logistic Regression 

Principle: Logistic Regression is a statistical methodology employed to elucidate 

the relationship between a dichotomous dependent variable and one or more 

independent variables. While traditional logistic regression is designed for binary 

classification, its extension to multiclass classification, often termed as Softmax 

Regression or Multinomial Logistic Regression, allows for modeling the 

relationship between multiple categories and predictor variables. It provides a 

mechanism to estimate the probability of an instance belonging to each of the 

categories. 
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Mathematical Framework: The equation for Softmax Regression is: 

𝑷(𝒚 = 𝒊 ∣ 𝑿) =
𝒆(𝑾𝒊𝒙 + 𝒃𝒊)

∑ 𝒆(𝑾𝒋𝒙 + 𝒃𝒋)𝑲
𝒋 = 𝟏

 

(Equation 3-2) 

Where  

• P(y=i ∣ X) is the probability that instance X belongs to class i 

• Wi and bi are the weight and bias terms for class i. 

• K is the total number of classes. 

Rationale for Deployment: Given the inherent multidimensionality of the dataset 

under scrutiny—comprising a multiplicity of features dictating the health status of 

the aircraft's landing gear—Logistic Regression is proffered as a preliminary 

measure. It is imperative to initiate this analysis to discern the potential linear 

separability embedded within the dataset. Should the features delineate the 

target variable via a linear decision boundary, it imparts critical insights into the 

intrinsic architecture of the data. 

3.3.2 Polynomial Regression 

Principle: Despite its nomenclature suggesting regression, when juxtaposed with 

logistic regression, Polynomial Regression, traditionally used for regression 

tasks, can be adapted for multiclass classification when combined with Softmax 

Regression. By introducing polynomial and interaction terms to the base feature 

set, it can capture non-linear relationships, making it adept at handling complex 

classification scenarios. 

Mathematical Framework: Polynomial regression augments the linear model 

paradigm by introducing polynomial features. To elucidate, for an individual 

feature x, instead of the mere presence of x, one might encounter terms such as 

x, x2, x3, …. For datasets characterized by multiple features, interaction terms 

further enrich the feature set, e.g., x1. x2, x1
2 .x2 and so forth. 
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Rationale for Deployment: Contemplating the non-linear characteristics 

inherent to the dataset, it becomes evident that a rudimentary linear decision 

boundary may prove inadequate. Polynomial regression, by virtue of its feature 

transformation capability, is adept at capturing these non-linear intricacies, 

making it an indispensable tool for datasets typified by complex, multidimensional 

interactions such as the one under study. 

3.3.3 Decision Tree 

Principle: A Decision Tree operates on a hierarchical decision-making approach, 

systematically breaking down a dataset into smaller and smaller subsets until the 

subsets reach a level where the decision can be made in a straightforward 

manner. It essentially mimics a tree structure, wherein each internal node 

represents a feature, each branch symbolizes a decision rule, and each leaf node 

corresponds to an outcome. 

Mathematical Framework: Decision Trees utilize several algorithms to decide 

to split a node into two or more sub-nodes. The creation of sub-nodes amplifies 

the homogeneity of resultant sub-nodes. Here in this research we are employing 

Gini impurity as a loss function to split the nodes 

Gini Impurity: It calculates the amount of uncertainty or disorder in a set. 

The formula for the Gini impurity is: 

𝑮𝒊𝒏𝒊(𝒑) =  𝟏 −  ∑ 𝑝𝑖
2

𝒏

𝒊 = 𝟏

 

(Equation 3-3) 

Where pi is the probability of choosing an item from class i 

Rationale for Deployment: The inherent strength of a Decision Tree lies in its 

simplicity and visual interpretability. Given the non-linear and multi-dimensional 

nature of the aircraft's landing gear dataset, a Decision Tree can effectively 

handle such complexities without necessitating any assumptions about the data's 

structure or distribution. Furthermore, it can manage both numerical and 



 

34 

categorical data, making it especially pertinent for datasets like the one under 

examination. 

3.3.4 K-Nearest Neighbors (KNN) 

Principle: K-Nearest Neighbors (KNN) is an instance-based learning algorithm, 

which means it doesn't intrinsically generate a model. Rather, it classifies based 

on the majority class among its 'k' most proximate instances from the training 

dataset. Think of KNN as a system where, when given an unclassified 

observation, the algorithm searches the training dataset for the 'k' training 

examples that are closest to the point and returns the output value that has the 

most occurrences among the k-neighbors. 

Mathematical Framework: The efficacy of KNN rests upon distance metrics. 

Given a new observation, the algorithm computes its distance to all other points 

in the dataset and selects the 'k' closest ones. The prevalent distance metrics 

include: 

Euclidean Distance: For two points P(x1,y1) and Q(x2,y2), the Euclidean distance is: 

𝒅(𝑷, 𝑸)  =  √(𝒙𝟐 − 𝒙𝟏)𝟐 + (𝒚𝟐 −  𝒚𝟏)𝟐  

(Equation 3-4) 

Rationale for Deployment: KNN is inherently non-parametric, meaning it 

makes no explicit assumptions about the functional form of the data 

transformation, making it suitable for the multi-dimensional nature of the dataset 

in question. Given the non-linear properties exhibited by the aircraft's landing 

gear data, KNN can be a strategic fit. Its ability to adapt easily to changes and 

its capacity to handle both numerical and categorical features further justify its 

consideration. 

3.3.5 Random Forest 

Principle: Random Forest is an ensemble learning method that operates by 

constructing a 'forest' of decision trees at training time and outputting the mode 

(classification) of the classes for individual trees. By aggregating the predictions 
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of numerous decision trees, Random Forest tends to achieve higher accuracy 

and avoids the overfitting issue that single decision trees can suffer from. 

Mathematical Framework: The key mathematical principles behind Random 

Forest include: 

Bootstrap Aggregating (Bagging): Multiple subsets of the original 

dataset are created using a process called bootstrapping (sampling with 

replacement). A decision tree is grown on each of these subsets. This 

ensures diversity among the trees and helps in reducing variance, leading 

to more stable predictions. 

Feature Randomness: In traditional decision trees, at each split, the best 

split amongst all features is chosen. In contrast, each tree in a Random 

Forest picks the best split among a random subset of features. This 

introduces further diversity and results in uncorrelated trees which, when 

averaged, can reduce variance. 

Rationale for Deployment: Given the non-linear and multi-dimensional nature 

of the aircraft's landing gear dataset, Random Forest is particularly well-suited. 

Here's why: 

a) Handling High Dimensionality: Random Forest can manage large 

datasets with higher dimensionality. It can handle thousands of input 

variables and identify the most significant ones, making it ideal for our 

dataset. 

b) Robust to Outliers: The ensemble nature of Random Forest makes it 

tough for outliers to sway the outcome significantly. 

c) Mitigating Overfitting: By averaging out the biases of individual trees, the 

variance is reduced, leading to a more generalized model. 

3.3.6 XGBoost 

Principle: XGBoost stands for Extreme Gradient Boosting. It's an optimized 

distributed gradient boosting library designed to be efficient, flexible, and 
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portable. Like Random Forest, XGBoost is also an ensemble technique, but 

rather than bagging, it uses boosting to convert weak learners into strong 

learners. At its core, XGBoost constructs an additive model in a forward stage-

wise fashion, with the objective of minimizing a given loss function. 

Mathematical Framework: XGBoost relies heavily on the gradient boosting 

framework. Key concepts include: 

1. Gradient Boosting: Given a differentiable loss function, the model is built 

in a stage-wise fashion by optimizing the loss function. In each stage, a 

set of decision trees are fitted to the negative gradients (called "pseudo-

residuals") of the loss function. 

2. Regularization: Unlike the traditional Gradient Boosting Machine (GBM), 

XGBoost incorporates L1 (Lasso Regression) and L2 (Ridge Regression) 

regularization terms in its objective function, making the learning process 

more regularized and helping to reduce overfitting. 

3. Handling Missing Data: XGBoost has an inherent routine to handle 

missing values, assigning them to whichever direction increases the purity 

most. 

Rationale for Deployment: 

1. Efficiency in Handling Large Datasets: Given the intricate nature of the 

aircraft landing gear dataset, XGBoost's ability to handle large datasets 

efficiently makes it a prime choice. 

2. Capability with Non-linear Data: XGBoost's gradient boosting framework 

inherently can capture non-linear relationships, aligning well with the non-

linear nature of the dataset. 

3. Regularization: The built-in L1 and L2 regularization in XGBoost help 

prevent overfitting, ensuring the model generalizes well to unseen data. 

4. Parallel Processing: XGBoost's ability to perform parallel computations 

on a single machine makes it faster than other boosting algorithms. 
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The selection of classifiers is strategic, aiming to capture both linear and non-

linear relationships within the dataset. While Logistic Regression and Polynomial 

Regression provide foundational insights, Decision Trees, KNN, Random Forest, 

and XGBoost delve deeper, exploring intricate feature interactions and patterns. 

By leveraging this diverse set of classifiers, we ensure a comprehensive 

understanding of the data, paving the way for robust predictions. Subsequent 

sections will delve into a detailed performance analysis, comparing the efficacy 

of these classifiers in the context of aircraft landing gear health prediction. 

3.4 Secondary model – Imputation model 

3.4.1 The Crucial Role of the Imputation Model 

In the vast realm of sensor data, inconsistencies, missing values, and faulty 

readings are inevitable. Addressing these challenges is our Imputation Model, a 

sophisticated secondary layer engineered to ensure data integrity and 

consistency. 

3.4.2 Why the Imputation Model Matters: 

Traditional data handling might discard or simply average out faulty or missing 

data. However, in complex systems like aircraft landing gears, every piece of data 

holds significance. The Imputation Model is our strategy to salvage and 

intelligently fill these data gaps. Its primary role is to ensure that downstream 

machine learning processes receive a dataset that's not just complete, but also 

reliable and robust. 

3.4.3 Decoding the Imputation Model Architecture: 
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Figure 3-12 Data flow logic in Imputer model to primary model 

The model depicted in the figure 3-13 leverages a pre-defined data structure, 

encompassing: 

Controlled Features: pumpSpeed, temp 

Main Features: pump_pressure, main_act_pressure_1, main_col_angle_1 

Redundant Features: pump_torque, main_act_pressure_2, 

main_act_position_2 
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The model takes in 8 parameters from controlled, main and redundant feature. 

Simple imputer logic checks the data reliability, it checks whether main features 

are present in the input parameters;  

if no – it replaces the normalised values of the corresponding missing 

values form the redundant feature; 

if yes – it passes the data to the next layer to check the outliers. 

In the consequent layer, the 8 parameters are again checked for outliers using 

Robust scalar which is trained using the test dataset to identify the extreme high 

or low values that cannot possibly the output of the sensor. If there is an outlier 

then it imputes the values as discussed in the earlier logic. Then this processed 

data is fed to primary model for classification. 

3.4.4 From Imputation to Outlier Handling: 

Post-imputation, the data undergoes scaling to identify outliers, which are often 

the result of uncalibrated sensors. When such anomalies are detected in main 

features, the model substitutes these values with the corresponding normalized 

data from redundant features. 

3.4.5 Feeding the Primary Model: 

Once preprocessed, the dataset—now distilled to controlled and processed main 

features—feeds into our primary machine learning model. This model has been 

meticulously trained on these five features, making it adept at assessing the 

health of the landing gear system. For a comprehensive assessment, we 

integrate the primary model with the imputation model, validating their combined 

prowess using a separate dataset. 

3.5 Implementing Explainability to the Decision 

3.5.1 Rationale for Incorporating Explainable AI 

While traditional machine learning models have ushered in a new era of data-

driven diagnostics in aviation, their intrinsic "black box" nature poses challenges 

in terms of transparency and interpretability. Given the critical implications of 
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predictions related to aircraft health, especially the landing gear, there's a 

pressing need for models that are not only accurate but also interpretable. This 

led to the decision to incorporate explainable AI (XAI) into our methodology. 

3.5.2 Integration of SHAP for Interpretability 

To achieve explainability, We employed a decision tree classifier’s feature 

importance to derive SHAP values (SHapley Additive exPlanations) because 

there exists a well-defined framework for decision tree specifically that gives the 

forced plots. SHAP values provide a unified measure of feature importance, 

allowing us to discern which features play pivotal roles in the model's predictions. 

The methodology involved: 

• Initializing the SHAP explainer with our trained decision tree model. 

• Computing SHAP values for instances in our dataset. 

• Visualizing these SHAP values through force plots to understand the 

contribution of each feature to the model's decision. 

3.5.3 Analysis of Specific Instances 

For a deeper dive into the model's decision-making process, specific instances 

from the dataset were analyzed using the computed SHAP values. This allowed 

us to understand how the model arrived at its predictions and which features were 

the most influential in driving these decisions. 

3.5.4 Methodological Significance 

The integration of XAI into our methodology serves a dual purpose: 

• Transparency: By demystifying the model's predictions, we can provide 

clear insights into the factors influencing aircraft landing gear health 

assessments. 

• Trustworthiness: With interpretable results, stakeholders – be it 

technicians, engineers, or regulatory bodies – can place greater trust in 
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the model's predictions, ensuring that maintenance and interventions are 

evidence-based and targeted. 

3.6 Performance Evaluation criteria of the model  

In determining the efficacy of various classifiers, a consistent evaluation metric is 

crucial. For this study, the Confusion Matrix, a widely-used tool in classification 

tasks, has been employed. 

The Confusion Matrix juxtaposes actual versus predicted classifications, offering 

insights into true positives, true negatives, false positives, and false negatives. 

From this matrix, several performance metrics can be derived: 

• Precision: Ratio of correctly predicted positive observations to the total 

predicted positives. 

• Accuracy: Ratio of correctly predicted observation to the total 

observations. 

• Sensitivity (or Recall): Ratio of correctly predicted positive observations 

to all actual positives. 

• F1 Score: Weighted average of Precision and Recall. 

• Specificity: Ratio of correctly predicted negative observations to all actual 

negatives. 

For this research, 'Accuracy' has been spotlighted as the primary performance 

metric. Extracted directly from the Confusion Matrix, accuracy provides a concise 

measure of a classifier's overall correctness. 

We evaluated the performance of six different classifiers: Logistic Regression, 

Polynomial Regression, Decision Tree, KNN, Random Forest, and XGBoost. The 

following are the results based on accuracy: 
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4 Results and Discussion 

4.1 Overview 

In this chapter, we present and discuss the results obtained from our two-tier 

model, which comprises a primary classification model and a secondary 

imputation model. This innovative approach was specifically designed to handle 

the intricacies of our dataset, derived from aircraft landing gear simulations. The 

results are evaluated based on the accuracy metrics of various classifiers applied 

to the dataset. Table 4-1 comprises the performance of the compound working of 

our proposed two-tire model, in the later subsections will dive deep into each 

layer’s performance and their impact in the proof of concept. 

Table 4-1 Performance of the model 

Algorithm Test Accuracy Validation Accuracy 

Logistic Regression 72.82% 72.09% 

Polynomial Regression 83.91% 86.72% 

Decision Tree 98.76% 93.93% 

KNN 94.22% 92.87% 

Random Forest 99.11% 92.98% 

XGBoost 98.64% 87.83% 

4.2 Primary Classification Model Results Evaluation 

4.2.1 Logistic Regression: 

• Test Accuracy: 72.82% 

• Validation Accuracy: 72.09% 

Logistic Regression, being a linear model, makes assumptions about the linear 

relationship between the input features and the log odds of the output. The 

obtained accuracy indicates that while the model has managed to capture some 

patterns in the data, it may be oversimplifying the problem. The similarity between 
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test and validation accuracies suggests that the model is neither overfitting nor 

underfitting significantly but might be underperforming due to the inherent non-

linearities in the data. The confusion matrices of this classifier with test and 

validation dataset is given the below Figure 5-1.  

 

Figure 4-1 Confusion Matrices of Logistic Regression 

4.2.2 Polynomial Regression: 

• Test Accuracy: 83.91% 

• Validation Accuracy: 86.72% 

Discussion: Polynomial Regression introduces higher-degree terms, allowing 

the model to capture non-linear patterns. The noticeable jump in accuracy from 

the standard Logistic Regression suggests that the dataset indeed contains non-

linearities which the Polynomial Regression is better equipped to handle. The 

consistent performance on both test and validation sets indicates that the model 

generalizes well. The confusion matrices of this classifier with test and validation 

dataset is given the below Figure 5-2.  
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Figure 4-2 Confusion Matrices of Polynomial Regression 

4.2.3 Decision Tree: 

• Test Accuracy: 98.76% 

• Validation Accuracy: 93.93% 

Discussion: Decision Trees are non-linear models that split the data based on 

feature thresholds. The high test accuracy indicates that the model has learned 

the training data intricacies. However, the difference between the test and 

validation accuracy suggests the model might be overfitting to the training data, 

thereby not generalizing as effectively to unseen data. Decision Trees are 

notorious for being prone to overfitting, especially when not regularized. The 

confusion matrices of this classifier with test and validation dataset is given the 

below Figure 5-3.  

 

Figure 4-3 Confusion Matrices of Decision Tree 

4.2.4 KNN 

• Test Accuracy: 94.22% 

• Validation Accuracy: 92.87% 

Discussion: K-Nearest Neighbors (KNN) classifies data points based on the 

majority class among its 'k' neighbors. The model's high accuracy on both 

datasets indicates it captures the data's underlying structure well. Given the 

nature of your dataset with sensor readings, it's plausible that similar readings (or 

neighbors) often correspond to similar health statuses, making KNN a suitable 
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choice. The confusion matrices of this classifier with test and validation dataset 

is given the below Figure 5-4.  

 

Figure 4-4 Confusion Matrices of KNN 

4.2.5 Random Forest 

• Test Accuracy: 99.11% 

• Validation Accuracy: 92.98% 

Discussion: Random Forest, an ensemble of decision trees, offers a robust 

performance. The almost perfect test accuracy suggests the model captures the 

training data's nuances. However, the dip in the validation accuracy, similar to 

the Decision Tree, hints at some level of overfitting. Yet, the overfitting is less 

pronounced than with a single Decision Tree, showcasing the power of ensemble 

methods in generalizing better. The confusion matrices of this classifier with test 

and validation dataset is given the below Figure 5-5.  

 

Figure 4-5 Confusion Matrices of Random Forest 
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4.2.6 XGBoost 

• Test Accuracy: 98.64% 

• Validation Accuracy: 87.83% 

Discussion: XGBoost, a gradient boosting framework, builds trees sequentially, 

where each tree corrects its predecessor's errors. The high test accuracy 

suggests that the model fits the training data very well. The difference in accuracy 

between test and validation sets, however, indicates potential overfitting. Given 

that boosting algorithms like XGBoost can be sensitive to noise in the data, 

careful hyperparameter tuning and regularization may help bridge this gap. The 

confusion matrices of this classifier with test and validation dataset is given the 

below Figure 5-6.  

 

Figure 4-6 Confusion Matrices of XGBoost 

The results clearly depict a wide variance in performance across models, 

emphasizing the importance of model selection tailored to the specific nature of 

the data. While ensemble methods like Random Forest and XGBoost exhibit 

impressive accuracies on the training set, care must be taken to prevent 

overfitting, ensuring that these models remain practical and reliable in real-world 

applications. Regularization, pruning, and hyperparameter tuning are essential 

tools in achieving this balance. On the other hand, simpler models like Logistic 

Regression, though not as accurate, provide a valuable baseline and can be more 

interpretable. The choice of classifier should ultimately align with the specific 
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goals of the research, considering factors like interpretability, computational 

efficiency, and the need for real-time predictions. 

4.3 Secondary Imputation Model Results 

The secondary imputation model serves a pivotal role in the overarching two-tier 

system. As a reminder, its primary responsibility is to contend with instances 

where sensor data might be faulty, uncalibrated, or missing. The importance and 

effectiveness of such a model can't be overstated. understanding the full scope 

of our innovative two-tier model's importance requires a comparative analysis of 

the system's performance with and without the secondary imputation model. 

Table 4-2 Performance comparison  

Algorithm Test 

Accuracy 

Without 

Imputation 

Validation 

Accuracy 

Without 

Imputation 

Test Accuracy 

with 

Imputation 

Validation 

Accuracy with 

Imputation 

Logistic 

Regression 

66.53% 64.24% 72.82% 72.09% 

Polynomial 

Regression 

78.65% 79.52% 83.91% 86.72% 

Decision Tree 95.88% 91.45% 98.76% 93.93% 

KNN 90.57% 89.02% 94.22% 92.87% 

Random Forest 96.51% 91.36% 99.11% 92.98% 

XGBoost 96.05% 85.92% 98.64% 87.83% 

By examining the accuracy metrics of the primary classification algorithms both 

with and without the imputation layer as depicted in the table 4-2 above, a clear 

enhancement in performance can be observed: 

• Logistic Regression: Improved from a test accuracy of 66.53% to 72.82% 

and a validation accuracy of 64.24% to 72.09%. 
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• Polynomial Regression: Showcased betterment from a test accuracy of 

78.65% to 83.91% and a validation accuracy rise from 79.52% to 86.72%. 

• Decision Tree: Notably increased from a test accuracy of 95.88% to 

98.76%, with the validation accuracy improving from 91.45% to 93.93%. 

• And similar significant improvements can be observed across other 

classifiers like KNN, Random Forest, and XGBoost. 

This improvement in accuracy metrics underscores the transformative impact of 

the secondary imputation model on the primary classifiers. 

4.3.1 Holistic Data Management 

The effectiveness of the secondary imputation model is evident through the 

improvement in accuracy metrics across all classifiers. It substantiates the 

assertion that handling missing or faulty data intelligently, rather than merely 

discarding or using rudimentary techniques, drastically optimizes the system's 

performance. 

4.3.2 Significance in Real-World Scenarios 

As mentioned earlier, in real-world scenarios, especially in aircraft landing gear 

simulations, data discrepancies due to sensor malfunctions or glitches are 

frequent. The secondary imputation model's data-driven approach successfully 

navigates these challenges, contributing to the impressive results. 

4.3.3 Feature Relationships & System Dynamics 

Our innovative two-tier system doesn't work in isolation. The interconnectedness 

between main and redundant features, reflecting the underlying physics and 

engineering of the aircraft systems, makes the secondary imputation model's 

success possible. It's not just about mathematical modeling but understanding 

the very essence of the system's design and operation. 

4.3.4 Enhancing Reliability and Confidence 

The tangible improvement in performance metrics with the secondary imputation 

model provides a solid foundation for stakeholders to base their decisions on. It 
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offers an additional layer of reliability, ensuring that the derived insights are not 

just accurate but also dependable. 

With the combined strengths of the primary classification models and the 

secondary imputation model, this research presents a robust and innovative 

approach to aircraft landing gear system analysis. Future research directions 

could further refine the imputation strategies, integrating more advanced 

algorithms or even exploring deep learning techniques for data imputation. 

5 Integration of Explainable AI Techniques 

5.1 Case in Point: Landing Gear Health Prediction of the 

36536th Instance 

Consider the proof of the concept, we have randomly picked the 36536th instance 

in our dataset with corresponding 5 features data and examine how our model 

came to the conclusion of the health status of that point. The model predicted a 

specific health state for the landing gear as “pumpFail_veryHighTemp” failure 

category. While such a prediction is valuable; without context, it remains an 

isolated data point. Enter XAI. Through the force plot  as shown in the figure 6-1, 

we could discern the most influential factors driving this prediction. 

 

Figure 5-1 Forced SHAP plot for 36536th health status classification 

5.1.1 Understanding the Force Plot 

The base value is the starting point of the plot. It represents the average 

prediction of the model over the entire dataset. In this case, it is the average 

likelihood of the “pumpFail_veryHighTemp” class, which is 0.0065. The output 

value (f (x)) is the model's prediction for this specific instance. The difference 

between the base value and the output value is explained by the contributions of 

each feature. The features are displayed as colored arrows in the figure 6-1. The 
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direction of the arrow (left or right) indicates whether the feature is pushing the 

prediction to decrease (left) or increase (right). The color represents the feature 

value (blue for low and red for high), and the width of the arrow represents the 

magnitude of the feature's impact. 

5.1.2 Interpreting the plot for the 36536th instance 

Here are the three factors that positively influenced the prediction: 

1. pumpSpeed: The speed of the pump had the most substantial positive 

influence on the prediction with a SHAP value of approximately 0.374. 

pumpSpeed zero is the main character in “pumpFail_veryHighTemp” 

failure categorisation. 

2. main_col_angle_1: The angle of the main column 1 also played a 

significant role in pushing the prediction positively with a SHAP value of 

about 0.313. It shouted saying that there is no movement in the landing 

gear.  

3. temp: Temperature had a positive SHAP value of approximately 0.257, 

indicating that the temperature readings for this instance were higher than 

average. 

Now, regarding the features that lowered or pushed back the prediction: 

4. main_act_pressure_1: This feature had a significant negative influence 

on the prediction with a SHAP value of approximately −0.026. This means 

that the pressure in the main actuator 1 for this instance was a strong piece 

of evidence that pushed the prediction away from the average prediction 

of the model. A lower value of this pressure than the average could 

indicate some other issues in the landing gear health. 

5. pump_pressure: This feature also had a negative impact on the 

prediction, albeit to a lesser extent, with a SHAP value of approximately 

−0.002. This means the pump pressure for this instance was another piece 

of evidence that slightly pushed the prediction away from the average 
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prediction. Again, a lower pump pressure than average might be indicative 

of certain conditions related to the aircraft's landing gear. 
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6 Significance of Key Sensors and Their Economic 

Implications 

In our extensive study on aircraft landing gear health assessment, the 

temperature sensor and the pump speed measurement sensor emerged as 

pivotal elements. These sensors are not mere tools for data collection; they are 

the linchpins ensuring optimal aircraft performance and, most importantly, 

passenger safety. These two specific sensors are absent in traditional ATA 32 

landing gear architecture. This study signifies the need of capturing the 

temperature and speed of hydraulic pump plays a crucial role, hence the focus 

has to be given by the aviation industry for the integration of the above-mentioned 

sensor along with their redundant sensors.  

From an economic standpoint, integrating these sensors into existing aerospace 

models presents a transformative opportunity. Accurate readings can preempt 

potential issues, translating to significant savings by preventing prolonged aircraft 

downtimes and expensive repairs. An upfront investment in retrofitting existing 

aircraft with advanced sensors can lead to long-term benefits, including reduced 

maintenance costs and a prolonged aircraft lifespan. Additionally, in an industry 

where reputation is paramount, airlines equipped with state-of-the-art sensors 

stand out, promoting passenger trust and brand loyalty. 
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7 Conclusion 

This research ventured into the intricate realm of aircraft landing gear systems, 

aiming to develop a robust model for health assessment through sensor data 

analysis. Central to our methodological approach was the two-tier system: a 

primary classification model strengthened by a secondary imputation model. In 

the vast expanse of sensor data, inconsistencies and anomalies are inevitable. 

The introduction of our imputation model, tailored to fill these data gaps 

intelligently, proved to be a game-changer, ensuring data integrity and 

consistency. 

Our comprehensive evaluation of various classifiers highlighted the nuanced 

nature of our dataset, with results indicating clear variances in performance. 

Notably, ensemble methods like Random Forest and XGBoost showcased 

impressive accuracies on the training set. Still, the overarching narrative 

emphasized the necessity of a balance between achieving high accuracy and 

preventing overfitting. 

Furthermore, the pivotal role of temperature and pump speed measurement 

sensors emerged as a cornerstone for accurate predictions. Their importance 

transcends mere technical functionalities, extending to significant economic 

ramifications for the aerospace industry. Proactive investments in these sensors 

can lead to substantial long-term operational savings and heightened safety 

standards. 

In essence, this study sheds light on the profound impact of strategic data 

handling and the role of specific sensors in the ever-evolving domain of 

aerospace systems. The insights garnered not only propel the aerospace sector 

toward enhanced safety protocols but also underline the symbiotic relationship 

between technology and economic efficiency. Future endeavours in this field 

would do well to remember that in the delicate dance of machinery, every data 

point, every sensor, holds the potential to shape the future of air travel.



 

54 

8 Future Works and suggestions 

Building on the foundation of our research, there are several avenues for 

exploration and improvement. The unique approach we've undertaken, which 

emphasizes redundancy and categorizes features for system health monitoring, 

indeed offers a novel solution to challenges in aircraft landing gear systems. 

However, every study, including ours, presents certain limitations and 

assumptions, which, when addressed, can further strengthen the research. Here 

are some recommendations for future endeavors: 

• Integration with Real-world Data: While our research heavily depended 

on simulations, future studies could seek to incorporate real-world flight 

data. By doing so, researchers could gain insights into more diverse and 

complex scenarios, ensuring that the model's robustness is tested in real-

world environments. 

• Expanded Sensor Technologies: The rapid advancements in sensor 

technologies present a prime opportunity. Future work should explore the 

integration of state-of-the-art sensors, understanding their capabilities and 

constraints. This could improve the model's sensitivity and predictive 

accuracy. 

• Deepening Redundancy Approaches: Our approach acknowledged the 

real-world importance of redundancy. Building on this, future research can 

delve deeper into creating more layers of redundancy. This could involve 

exploring the possibility of utilizing tertiary sensors or even creating 

synthetic data through advanced algorithms when both primary and 

secondary sensors fail. 

• Enhanced Machine Learning Models: As machine learning and artificial 

intelligence evolve, there's potential to explore more advanced algorithms 

that can improve prediction accuracy and robustness. Techniques like 

neural networks or ensemble models, adapted specifically for aviation 

requirements, could be studied. 

• Holistic Aircraft Health Monitoring: While our focus was on the landing 

gear system, future research could look at integrating our system into a 
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more comprehensive aircraft health monitoring system. This would involve 

understanding interactions between different aircraft components and how 

they affect overall health predictions. 

• Considering Environmental Factors: In real-world scenarios, external 

factors like weather conditions, air traffic, and even pilot behavior can play 

crucial roles in the health of aircraft systems. Future studies should seek 

to integrate these parameters, ensuring a holistic view of the system's 

health. 

In conclusion, while our research lays a significant foundation for aircraft landing 

gear system monitoring, it also opens the doors to numerous possibilities. Each 

of these recommendations, when pursued, holds the promise of elevating our 

solution, making it even more valuable in the ever-evolving domain of aviation 

safety. 
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Appendix B : Risk analysis 

In the journey of any scientific endeavor, understanding and accounting for 

potential risks is paramount. This not only adds credibility to the research process 

but also prepares the researcher for unforeseen challenges. Our research, 

though rigorous and comprehensive, is not exempt from potential pitfalls. To 

ensure a holistic and transparent understanding, we present a dedicated risk 

analysis that evaluates potential threats to the validity and applicability of our 

findings. This analysis is coupled with mitigation strategies, showcasing proactive 

measures taken to address and minimize these risks. 

Table 9-1 Risk Assessment and Mitigation Strategies for the Research Project 

Risk Description Mitigation Strategy Level of 
Risk 

Inaccurate 
Simulation Data 

Simulated data might 
not accurately reflect 
real-world conditions, 
leading to models that 
don't generalize well in 
practical scenarios. 

Used robust and industry-accepted 
simulation tools. Cross-validated 
simulated results with accepted 
historical simulation data to ensure 
consistency and reliability. 

Medium 

Biased Classifier 
Performance 

Some classifiers might 
seem effective based 
on training data but 
may perform poorly 
with unseen data. 

Leveraged a diverse set of classifiers 
and tested their performance against 
both validation and test datasets. 
Validation datasets are isolated and 
completely unseen by the trained model. 
This approach ensured a holistic 
evaluation and minimized the risk of 
selection bias. 

High 

Misinterpretation 
of Explainable AI 
(XAI) Outputs 

Stakeholders might 
misinterpret or 
misrepresent XAI 
outputs, leading to 
incorrect decisions. 

Ensured rigorous documentation and 
provided explanatory guidelines for the 
XAI outputs to ensure clarity and correct 
interpretation of results. 

Medium 

Model Scalability 
and Evolution 

As aircraft technology 
evolves, the model 
might become 
obsolete or may not 
scale effectively. 

Designed the model architecture to be 
modular, allowing for easy updates and 
integrations. Kept abreast of industry 
advancements to ensure periodic model 
recalibrations and updates. 

Low 
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The progression of this research project, spanning from April to August 2023, 

followed a meticulously planned schedule to ensure methodical and systematic 

execution. The timeline details the core research activities and delineates the 

exact weeks dedicated to each pivotal task. 

 

Figure Appendix-1 Project timeline 

• Literature Review: The project commenced with a profound exploration 

of existing literature. Weeks 1 to 3 (April) were dedicated to immersing 

ourselves in prior research, identifying gaps, and establishing a foundation 

for the upcoming stages. 

• Model Design and Data Collection: With the theoretical foundation 

established, the next phase entailed designing our unique two-tier ML 

model and collecting pertinent data. This stage consumed weeks 4 to 6, 

stretching from late April to mid-May. 

• Training Model: June was an intensive period with the primary focus on 

training our ML model. By harnessing the accumulated data, we dedicated 

weeks 7 to 10 to perfect the model, ensuring its accuracy and efficiency. 

• Result Analysis: With the trained model in hand, July saw the onset of 

result analysis. Weeks 11 to 13 were reserved for evaluating and 

interpreting the model's predictions, ensuring they align with real-world 

scenarios. 

• Report Writing: The process of documenting our findings was spread 

across the project, ensuring real-time recording and reflections. Spanning 

from week 2 all the way to week 17, this ongoing task culminated in 

August, with a comprehensive report detailing every phase of the 

research. 
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• Presentation Preparation: Concurrently, in the concluding phase of the 

project, weeks 15 to 17 were set aside for crafting an impactful 

presentation. This entailed synthesizing our findings and designing visuals 

that would best communicate the significance and outcomes of our 

research to our audience. 

Mapping this structured timeline not only facilitated effective project management 

but also ensured that each research phase received the requisite focus and 

diligence. The ensuing Gantt chart provides a visual representation of this 

timeline, capturing the sequence and overlap of these core activities. 

Appendix D : Codes 

Classifier Evaluation using Two-Tier Preprocessing 

In the code presented, we employ a two-tier preprocessing methodology to clean 

and normalize data before it is input to various classifiers. 

1. Data Loading: The datasets MasterData.csv and 

MasterDataValidator.csv are loaded, serving as training/test and 

validation datasets, respectively. 

2. Two-Tier Preprocessing: 

• Normalization: Features are scaled using the RobustScaler, 

which is less prone to outliers. 

• Outlier Handling: Certain features that exceed a given threshold 

are adjusted using redundant or correlated features, improving the 

quality of data fed into the classifiers. 

3. Classifier Training and Evaluation: Six classifiers (Logistic Regression, 

Polynomial Regression, Decision Tree, K-Nearest Neighbors, Random 

Forest, and XGBoost) are trained on the preprocessed training dataset. 

Their performance is subsequently evaluated on both the preprocessed 

test and validation sets. 
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import pandas as pd 

from sklearn.preprocessing import RobustScaler, PolynomialFeatures, 

LabelEncoder 

from sklearn.model_selection import train_test_split 

from sklearn.tree import DecisionTreeClassifier 

from sklearn.neighbors import KNeighborsClassifier 

from sklearn.ensemble import RandomForestClassifier 

from xgboost import XGBClassifier 

from sklearn.linear_model import LogisticRegression 

from sklearn.metrics import accuracy_score, confusion_matrix 

import matplotlib.pyplot as plt 

import seaborn as sns 

import os 

 

# Check if the results directory exists, if not, create it 

if not os.path.exists("results"): 

    os.makedirs("results") 

 

# Load the datasets 

data = pd.read_csv("MasterData.csv") 

data_validator = pd.read_csv("MasterDataValidator.csv") 

 

# Features and Target Variable 

features = ['pumpSpeed', 'temp', 'pump_pressure', 

'main_act_pressure_1', 'main_col_angle_1'] 

X = data[features] 

y = data['health'] 

 

# Splitting the data into train and test sets 

X_train, X_test, y_train, y_test = train_test_split(X, y, 

test_size=0.3, random_state=42) 

 

# Load validation data 

X_valid = data_validator[features] 

y_valid = data_validator['health'] 

 

# Convert string labels to integers for XGBoost compatibility 

label_encoder = LabelEncoder() 

y_train = label_encoder.fit_transform(y_train) 

y_test = label_encoder.transform(y_test) 

y_valid = label_encoder.transform(y_valid) 

 

# Preprocessing with RobustScaler 

scaler = RobustScaler().fit(X_train) 

X_train_scaled = scaler.transform(X_train) 

X_test_scaled = scaler.transform(X_test) 

X_valid_scaled = scaler.transform(X_valid) 

 

# Polynomial features for Polynomial Regression 

poly = PolynomialFeatures(degree=2) 

X_train_poly = poly.fit_transform(X_train_scaled) 

X_test_poly = poly.transform(X_test_scaled) 

X_valid_poly = poly.transform(X_valid_scaled) 

 

# Training the models 

models = { 

    "Logistic Regression": LogisticRegression(solver='lbfgs', 

max_iter=5000), 

    "Polynomial Regression": LogisticRegression(solver='lbfgs', 
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max_iter=5000), 

    "Decision Tree": DecisionTreeClassifier(random_state=42), 

    "KNN": KNeighborsClassifier(), 

    "Random Forest": RandomForestClassifier(random_state=42), 

    "XGBoost": XGBClassifier(use_label_encoder=False, 

eval_metric="logloss", random_state=42) 

} 

 

# Train the models 

for name, model in models.items(): 

    print(f"Training {name} Classifier...") 

    if name == "Polynomial Regression": 

        model.fit(X_train_poly, y_train) 

    else: 

        model.fit(X_train_scaled, y_train) 

 

# Evaluate the models on test and validation datasets, and plot the 

results 

for name, model in models.items(): 

    print(f"Evaluating {name} Classifier...") 

 

    if name == "Polynomial Regression": 

        y_pred_test = model.predict(X_test_poly) 

        y_pred_valid = model.predict(X_valid_poly) 

    else: 

        y_pred_test = model.predict(X_test_scaled) 

        y_pred_valid = model.predict(X_valid_scaled) 

 

    # Accuracy 

    test_accuracy = accuracy_score(y_test, y_pred_test) 

    valid_accuracy = accuracy_score(y_valid, y_pred_valid) 

    print(f"{name} Classifier Test Accuracy: {test_accuracy * 

100:.2f}%") 

    print(f"{name} Classifier Validation Accuracy: {valid_accuracy * 

100:.2f}%\n") 

 

    # Confusion matrices visualization 

    fig, ax = plt.subplots(1, 2, figsize=(12, 4)) 

    sns.heatmap(confusion_matrix(y_test, y_pred_test), annot=True, 

fmt="d", cmap="Blues", ax=ax[0], cbar=False) 

    ax[0].set_title(f"{name} - Test Set") 

    sns.heatmap(confusion_matrix(y_valid, y_pred_valid), annot=True, 

fmt="d", cmap="Blues", ax=ax[1], cbar=False) 

    ax[1].set_title(f"{name} - Validation Set") 

    plt.tight_layout() 

    plt.savefig(f"results/{name}_confusion_matrices.png", dpi=300) 

    plt.show() 

 

Deployment code: Interactive Health Prediction System with Explainable 

AI (XAI) Insights 

The provided code is designed for a two-step machine learning prediction 

system that integrates user interactivity and explainability. The purpose is to 
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predict the health of a system based on five selected features. Here's a 

breakdown of the steps and functionality: 

1. Data Loading: The code begins by loading a dataset named 

MasterData.csv. 

2. Feature Selection: Five primary features are chosen for modeling, 

including pumpSpeed, temp, pump_pressure, main_act_pressure_1, 

and main_col_angle_1. 

3. Primary Model: 

• The data is normalized using the RobustScaler from scikit-learn. 

• A Decision Tree classifier is trained on this normalized data. 

• The trained primary model is then saved as a pkl file for future 

use. 

• An SHAP explainer is initialized for the Decision Tree model to 

provide insights on the impact of each feature on the predictions. 

4. Secondary Model (Imputation Model) Function: This function handles 

user interactivity and imputes missing data based on some redundant 

features. 

• The user can either input new values or use an existing instance 

from the dataset. 

• The function handles missing data and scales the provided 

instance. 

• Predictions are made using the primary model, and the instance 

data is adjusted using some heuristic corrections. 

• The adjusted instance is then fed again to the primary model for a 

secondary prediction. 
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• Finally, the SHAP force plot is generated and saved to visualize 

the contribution of each feature to the model's prediction for the 

given instance. 

5. SHAP Explanation: A separate function (show_shap_values) is 

provided to generate and visualize the SHAP values using a force plot. 

6. Testing: The secondary_model_preprocessing function is tested at 

the end of the script. 

 

import pandas as pd 

import shap 

from sklearn.tree import DecisionTreeClassifier 

from sklearn.preprocessing import RobustScaler 

import joblib 

 

 

""" 

It intakes the instance value and give prediction it is user 

interavtive and XAI 

""" 

 

# Load the dataset 

data = pd.read_csv("MasterData.csv") 

 

# Features and target variable 

features = ['pumpSpeed', 'temp', 'pump_pressure', 

'main_act_pressure_1', 'main_col_angle_1'] 

target = data['health'] 

 

# 1. Training the Primary Model 

# Fit the Robust Scaler on the training data for only the five 

selected features 

scaler_primary = RobustScaler().fit(data[features]) 

 

# Normalize the data using the fitted Robust Scaler 

data_normalized = scaler_primary.transform(data[features]) 

 

# Train the Decision Tree Classifier for the primary model using 

normalized data 

clf_primary_normalized = DecisionTreeClassifier(random_state=42) 

clf_primary_normalized.fit(data_normalized, target) 

 

# Save the primary model 

joblib.dump(clf_primary_normalized, 

"primary_model_normalized.pkl") 

 

# Initialize the explainer for SHAP 

explainer = shap.TreeExplainer(clf_primary_normalized) 

 

# 2. Secondary Model (Imputation Model) Function 

def secondary_model_preprocessing(data, primary_model, scaler): 
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    # Ask the user to enter new values or use an existing 

instance 

    choice = input("Do you want to enter new values or use an 

existing instance? Enter 'new' or 'existing': ").lower() 

 

    if choice == "new": 

        # Get new values from the user 

        instance = {} 

        for feature in features: 

            instance[feature] = float(input(f"Enter value for 

{feature}: ")) 

        instance = pd.Series(instance) 

    else: 

        # Use existing instance 

        instance_num = int(input("Enter the instance number: ")) 

        instance = data.iloc[instance_num].copy() 

        print(f"\nExisting data for instance {instance_num}:\n") 

        print(instance) 

 

        # Ask the user if they want to modify any values 

        modify_choice = input("\nDo you want to modify any 

values? Enter 'yes' or 'no': ").lower() 

        if modify_choice == "yes": 

            for feature in features: 

                new_value = input(f"Current value for {feature} 

is {instance[feature]}. Enter a new value or press enter to keep 

the current value: ") 

                if new_value: 

                    instance[feature] = float(new_value) 

 

    print(f"\nActual Health: {instance['health']}") 

 

    # Handle Missing Values 

    if pd.isnull(instance['pump_pressure']): 

        instance['pump_pressure'] = instance['pump_torque'] 

    if pd.isnull(instance['main_act_pressure_1']): 

        instance['main_act_pressure_1'] = 

instance['main_act_pressure_2'] 

    if pd.isnull(instance['main_col_angle_1']): 

        instance['main_col_angle_1'] = -

instance['main_act_position_2'] 

 

    # Scale the instance using Robust Scaler 

    scaled_instance = scaler.transform([instance[features]])[0] 

 

    # Primary Model Prediction 

    primary_model_prediction = 

primary_model.predict([scaled_instance])[0] 

    print(f"Primary Model Predicted Health: 

{primary_model_prediction}") 

 

    # Correct outliers using the Redundant Features 

    threshold = 2 

    if abs(scaled_instance[features.index('pump_pressure')]) > 

threshold: 

        scaled_instance[features.index('pump_pressure')] = 

scaled_instance[features.index('pump_torque')] 

    if 

abs(scaled_instance[features.index('main_act_pressure_1')]) > 
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threshold: 

        scaled_instance[features.index('main_act_pressure_1')] = 

scaled_instance[features.index('main_act_pressure_2')] 

    if abs(scaled_instance[features.index('main_col_angle_1')]) 

> threshold: 

        scaled_instance[features.index('main_col_angle_1')] = -

scaled_instance[features.index('main_act_position_2')] 

 

    # Secondary (Imputation) Model Prediction 

    secondary_model_prediction = 

primary_model.predict([scaled_instance])[0] 

    print(f"Secondary Model (Imputer) Predicted Health: 

{secondary_model_prediction}") 

 

 

    # Display the SHAP force plot for explanation 

    shap_value = show_shap_values(scaled_instance.reshape(1, -

1), primary_model, explainer) 

    shap.save_html("shap_force_plot.html", shap_value) 

 

# Function to show SHAP values using force plot 

def show_shap_values(instance, model, explainer): 

    shap_values = explainer.shap_values(instance) 

    shap.initjs() 

    return shap.force_plot(explainer.expected_value[0], 

shap_values[0], instance) 

 

# Test the function 

secondary_model_preprocessing(data, clf_primary_normalized, 

scaler_primary) 

 

 

 


